冻融循环和动态荷载对泡沫混凝土累积变形和微观结构的耦合效应

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Materials and Structures Pub Date : 2024-06-28 DOI:10.1617/s11527-024-02409-8
Zhen-Dong Cui, Long-Ji Zhang, Kun-Kun Fan, Li Yuan
{"title":"冻融循环和动态荷载对泡沫混凝土累积变形和微观结构的耦合效应","authors":"Zhen-Dong Cui,&nbsp;Long-Ji Zhang,&nbsp;Kun-Kun Fan,&nbsp;Li Yuan","doi":"10.1617/s11527-024-02409-8","DOIUrl":null,"url":null,"abstract":"<div><p>Foam concrete is characterized by lightweight, self-compacting and high flowability, thereby widely used as a subgrade bed filler. High-speed railway subgrades usually experience inhomogeneous deformation due to the occurrence of freezing-thawing cycles in seasonally frozen soil areas. It is essential to study the deformation behavior of foam concrete under the coupling effect of freezing-thawing cycles and dynamic loading. In this paper, dynamic triaxial tests were performed to study the accumulative deformation of the foam concrete under different numbers of freezing-thawing cycles, freezing temperatures, amplitudes and frequencies of dynamic loading. Based on the scanning electron microscopy (SEM) tests, the characteristics of the pore structure were analyzed quantitatively by introducing the directional distribution frequency and fractal dimension. The research results illustrate that the damage caused by freezing-thawing progress to the pore structure results in more significant deformation of the foam concrete subjected to dynamic loading. There exists an accumulative damage effect induced by the coupling action of long-term dynamic loading and freezing-thawing progress on the microstructure and mechanical properties of foam concrete. The development of the fractal dimension agrees with that of the accumulative strain, indicating a close connection between the microstructure and the dynamic behavior of foam concrete. The findings concluded in this study contribute to a sufficient understanding of the performance of foam concrete used as high-speed railway subgrade fillers subjected to seasonal freezing.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02409-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Coupling effect of freezing-thawing cycles and dynamic loading on the accumulative deformation and microstructure of foam concrete\",\"authors\":\"Zhen-Dong Cui,&nbsp;Long-Ji Zhang,&nbsp;Kun-Kun Fan,&nbsp;Li Yuan\",\"doi\":\"10.1617/s11527-024-02409-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Foam concrete is characterized by lightweight, self-compacting and high flowability, thereby widely used as a subgrade bed filler. High-speed railway subgrades usually experience inhomogeneous deformation due to the occurrence of freezing-thawing cycles in seasonally frozen soil areas. It is essential to study the deformation behavior of foam concrete under the coupling effect of freezing-thawing cycles and dynamic loading. In this paper, dynamic triaxial tests were performed to study the accumulative deformation of the foam concrete under different numbers of freezing-thawing cycles, freezing temperatures, amplitudes and frequencies of dynamic loading. Based on the scanning electron microscopy (SEM) tests, the characteristics of the pore structure were analyzed quantitatively by introducing the directional distribution frequency and fractal dimension. The research results illustrate that the damage caused by freezing-thawing progress to the pore structure results in more significant deformation of the foam concrete subjected to dynamic loading. There exists an accumulative damage effect induced by the coupling action of long-term dynamic loading and freezing-thawing progress on the microstructure and mechanical properties of foam concrete. The development of the fractal dimension agrees with that of the accumulative strain, indicating a close connection between the microstructure and the dynamic behavior of foam concrete. The findings concluded in this study contribute to a sufficient understanding of the performance of foam concrete used as high-speed railway subgrade fillers subjected to seasonal freezing.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1617/s11527-024-02409-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-024-02409-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02409-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

泡沫混凝土具有轻质、自密实和高流动性的特点,因此被广泛用作路基填料。在季节性冻土地区,由于冻融循环的发生,高速铁路路基通常会发生不均匀变形。研究冻融循环和动态荷载耦合作用下泡沫混凝土的变形行为至关重要。本文进行了动态三轴试验,以研究泡沫混凝土在不同冻融循环次数、冻结温度、动荷载振幅和频率下的累积变形。在扫描电子显微镜(SEM)测试的基础上,通过引入方向分布频率和分形维度,对孔隙结构的特征进行了定量分析。研究结果表明,冻融过程对孔隙结构造成的破坏导致泡沫混凝土在承受动荷载时产生更显著的变形。长期动荷载和冻融过程的耦合作用对泡沫混凝土的微观结构和力学性能产生了累积损伤效应。分形维度的发展与累积应变的发展一致,表明泡沫混凝土的微观结构与动态行为之间存在密切联系。本研究的结论有助于充分了解作为高速铁路路基填料的泡沫混凝土在季节性冻结条件下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coupling effect of freezing-thawing cycles and dynamic loading on the accumulative deformation and microstructure of foam concrete

Foam concrete is characterized by lightweight, self-compacting and high flowability, thereby widely used as a subgrade bed filler. High-speed railway subgrades usually experience inhomogeneous deformation due to the occurrence of freezing-thawing cycles in seasonally frozen soil areas. It is essential to study the deformation behavior of foam concrete under the coupling effect of freezing-thawing cycles and dynamic loading. In this paper, dynamic triaxial tests were performed to study the accumulative deformation of the foam concrete under different numbers of freezing-thawing cycles, freezing temperatures, amplitudes and frequencies of dynamic loading. Based on the scanning electron microscopy (SEM) tests, the characteristics of the pore structure were analyzed quantitatively by introducing the directional distribution frequency and fractal dimension. The research results illustrate that the damage caused by freezing-thawing progress to the pore structure results in more significant deformation of the foam concrete subjected to dynamic loading. There exists an accumulative damage effect induced by the coupling action of long-term dynamic loading and freezing-thawing progress on the microstructure and mechanical properties of foam concrete. The development of the fractal dimension agrees with that of the accumulative strain, indicating a close connection between the microstructure and the dynamic behavior of foam concrete. The findings concluded in this study contribute to a sufficient understanding of the performance of foam concrete used as high-speed railway subgrade fillers subjected to seasonal freezing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
期刊最新文献
Effect of activator dosage and mass ratio of GGBFS to FA on 3D printing performance of kenaf geopolymer Investigation into the flexural performance of novel precast sandwich wall panels Inorganic–organic hybrid geopolymers: evolution of molecular and pore structure, and its effect on mechanical and fire-retardant properties Assessment of waste eggshell powder as a limestone alternative in portland cement Autogenous shrinkage and cracking of ultra-high-performance concrete with soda residue as an internal curing agent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1