Norliza Ismail, Wan Yusmawati Wan Yusoff, Azuraida Amat, Nor Azlian Abdul Manaf, Nurazlin Ahmad
{"title":"回顾极端条件对焊点可靠性的影响:了解失效机制","authors":"Norliza Ismail, Wan Yusmawati Wan Yusoff, Azuraida Amat, Nor Azlian Abdul Manaf, Nurazlin Ahmad","doi":"10.1016/j.dt.2024.05.013","DOIUrl":null,"url":null,"abstract":"Solder joint, crucial component in electronic systems, face significant challenges when exposed to extreme conditions during applications. The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions. Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint. This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions. This study covers an in-depth analysis of effect extreme temperature, mechanical stress, and radiation conditions towards solder joint. Impact of each condition to the microstructure including solder matrix and intermetallic compound layer, and mechanical properties such as fatigue, shear strength, creep, and hardness was thoroughly discussed. The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding. Furthermore, the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions. The findings offer valuable guidance for researchers, engineers, and practitioners involved in electronics, engineering, and related fields, fostering advancements in solder joint reliability and performance.","PeriodicalId":10986,"journal":{"name":"Defence Technology","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of extreme condition effects on solder joint reliability: Understanding failure mechanisms\",\"authors\":\"Norliza Ismail, Wan Yusmawati Wan Yusoff, Azuraida Amat, Nor Azlian Abdul Manaf, Nurazlin Ahmad\",\"doi\":\"10.1016/j.dt.2024.05.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solder joint, crucial component in electronic systems, face significant challenges when exposed to extreme conditions during applications. The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions. Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint. This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions. This study covers an in-depth analysis of effect extreme temperature, mechanical stress, and radiation conditions towards solder joint. Impact of each condition to the microstructure including solder matrix and intermetallic compound layer, and mechanical properties such as fatigue, shear strength, creep, and hardness was thoroughly discussed. The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding. Furthermore, the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions. The findings offer valuable guidance for researchers, engineers, and practitioners involved in electronics, engineering, and related fields, fostering advancements in solder joint reliability and performance.\",\"PeriodicalId\":10986,\"journal\":{\"name\":\"Defence Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dt.2024.05.013\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.dt.2024.05.013","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
A review of extreme condition effects on solder joint reliability: Understanding failure mechanisms
Solder joint, crucial component in electronic systems, face significant challenges when exposed to extreme conditions during applications. The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions. Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint. This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions. This study covers an in-depth analysis of effect extreme temperature, mechanical stress, and radiation conditions towards solder joint. Impact of each condition to the microstructure including solder matrix and intermetallic compound layer, and mechanical properties such as fatigue, shear strength, creep, and hardness was thoroughly discussed. The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding. Furthermore, the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions. The findings offer valuable guidance for researchers, engineers, and practitioners involved in electronics, engineering, and related fields, fostering advancements in solder joint reliability and performance.
期刊介绍:
Defence Technology, sponsored by China Ordnance Society, is published quarterly and aims to become one of the well-known comprehensive journals in the world, which reports on the breakthroughs in defence technology by building up an international academic exchange platform for the defence technology related research. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.