用于高性能锌-空气充电电池的坚固灵活的三维集成 FeNi@NHCFs 空气电极

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-06-28 DOI:10.1007/s12598-024-02815-5
Lei-Chao Meng, Hao Zhang, Le Kang, Yi Zhang, Neng-Fei Yu, Fan Zhang, Hui-Ling Du
{"title":"用于高性能锌-空气充电电池的坚固灵活的三维集成 FeNi@NHCFs 空气电极","authors":"Lei-Chao Meng, Hao Zhang, Le Kang, Yi Zhang, Neng-Fei Yu, Fan Zhang, Hui-Ling Du","doi":"10.1007/s12598-024-02815-5","DOIUrl":null,"url":null,"abstract":"<p>Designing bifunctional oxygen reduction/evolution (ORR/OER) catalysts with high activity, robust stability and low cost is the key to accelerating the commercialization of rechargeable zinc-air battery (RZAB). Here, we propose a template-assisted electrospinning strategy to in situ fabricate 3D fibers consisting of FeNi nanoparticles embedded into N-doped hollow porous carbon nanospheres (FeNi@NHCFs) as the stable binder-free integrated air cathode in RZAB. 3D interconnected conductive fiber networks provide fast electron transfer pathways and strengthen the mechanical flexibility. Meanwhile, N-doped hollow porous carbon nanospheres not only evenly confine FeNi nanoparticles to provide sufficient catalytic active sites, but also endow optimum mass transfer environment to reduce diffusion barrier. The RZABs assembled by FeNi@NHCFs as integrated air cathodes exhibit outstanding battery performance with high open-circuit voltage, large discharge specific capacity and power density, durable cyclic stability and great flexibility. Thus, this work brings a useful strategy to fabricate the integrated electrodes without using any polymeric binders for metal air batteries and other related fields.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust and flexible 3D integrated FeNi@NHCFs air electrode for high-performance rechargeable zinc-air battery\",\"authors\":\"Lei-Chao Meng, Hao Zhang, Le Kang, Yi Zhang, Neng-Fei Yu, Fan Zhang, Hui-Ling Du\",\"doi\":\"10.1007/s12598-024-02815-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Designing bifunctional oxygen reduction/evolution (ORR/OER) catalysts with high activity, robust stability and low cost is the key to accelerating the commercialization of rechargeable zinc-air battery (RZAB). Here, we propose a template-assisted electrospinning strategy to in situ fabricate 3D fibers consisting of FeNi nanoparticles embedded into N-doped hollow porous carbon nanospheres (FeNi@NHCFs) as the stable binder-free integrated air cathode in RZAB. 3D interconnected conductive fiber networks provide fast electron transfer pathways and strengthen the mechanical flexibility. Meanwhile, N-doped hollow porous carbon nanospheres not only evenly confine FeNi nanoparticles to provide sufficient catalytic active sites, but also endow optimum mass transfer environment to reduce diffusion barrier. The RZABs assembled by FeNi@NHCFs as integrated air cathodes exhibit outstanding battery performance with high open-circuit voltage, large discharge specific capacity and power density, durable cyclic stability and great flexibility. Thus, this work brings a useful strategy to fabricate the integrated electrodes without using any polymeric binders for metal air batteries and other related fields.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12598-024-02815-5\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02815-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计具有高活性、高稳定性和低成本的双功能氧还原/进化(ORR/OER)催化剂是加速可充电锌空气电池(RZAB)商业化的关键。在此,我们提出了一种模板辅助电纺丝策略,以原位制造由嵌入 N 掺杂中空多孔碳纳米球(FeNi@NHCFs)的 FeNi 纳米颗粒组成的三维纤维,作为 RZAB 中稳定的无粘结剂集成空气阴极。三维相互连接的导电纤维网络提供了快速的电子传输途径,并增强了机械灵活性。同时,掺杂 N 的中空多孔碳纳米球不仅能均匀地约束镍铁纳米颗粒,提供足够的催化活性位点,还能提供最佳的传质环境,降低扩散阻力。由 FeNi@NHCFs 组装成的 RZABs 作为集成空气阴极,具有开路电压高、放电比容量和功率密度大、持久循环稳定性和灵活性强等优异的电池性能。因此,这项工作为金属空气电池及其他相关领域提供了一种不使用任何聚合物粘合剂制造集成电极的有用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust and flexible 3D integrated FeNi@NHCFs air electrode for high-performance rechargeable zinc-air battery

Designing bifunctional oxygen reduction/evolution (ORR/OER) catalysts with high activity, robust stability and low cost is the key to accelerating the commercialization of rechargeable zinc-air battery (RZAB). Here, we propose a template-assisted electrospinning strategy to in situ fabricate 3D fibers consisting of FeNi nanoparticles embedded into N-doped hollow porous carbon nanospheres (FeNi@NHCFs) as the stable binder-free integrated air cathode in RZAB. 3D interconnected conductive fiber networks provide fast electron transfer pathways and strengthen the mechanical flexibility. Meanwhile, N-doped hollow porous carbon nanospheres not only evenly confine FeNi nanoparticles to provide sufficient catalytic active sites, but also endow optimum mass transfer environment to reduce diffusion barrier. The RZABs assembled by FeNi@NHCFs as integrated air cathodes exhibit outstanding battery performance with high open-circuit voltage, large discharge specific capacity and power density, durable cyclic stability and great flexibility. Thus, this work brings a useful strategy to fabricate the integrated electrodes without using any polymeric binders for metal air batteries and other related fields.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Non-stoichiometric Ni3ZnC0.7 carbide loading on melamine sponge-derived carbon for hydrogen storage performance improvement of MgH2 Zinc-based metal-organic frameworks as efficient carriers for anticancer drug to reduce toxicity and increase efficacy Tumor microenvironment-responsive drug self-delivery systems to treat cancer and overcome MDR Simultaneously improving high-temperature strength and ductility of as-cast (TiB + TiC)/Ti–6Al–4Sn–7Zr–1Nb–1Mo–1W–0.2Si via triplex heat treatment Freestanding lamellar nanoporous Ni–Co–Mn alloy: a highly active and stable 3D bifunctional electrode for high-current–density water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1