变速驱动装置中感应机可扩展模型的参数化优化辅助方法

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Applied Electromagnetics and Mechanics Pub Date : 2024-04-30 DOI:10.3233/jae-230216
Florian Pauli, Martin Hafner, Kay Hameyer
{"title":"变速驱动装置中感应机可扩展模型的参数化优化辅助方法","authors":"Florian Pauli, Martin Hafner, Kay Hameyer","doi":"10.3233/jae-230216","DOIUrl":null,"url":null,"abstract":"The accurate and time-saving prediction of essential machine variables (output power, torque, and efficiency) is crucial for manufacturers offering a wide power range of induction machines. Many motor variants are typically produced by axially scaling and rewinding the machine. Rescaling proceduresof electromagnetic models of induction machines are in everyday use and well known. However, while a high accuracy can be achieved by rescaling in theory, more significant deviations between simulated and measured output parameters of the realized scaled device occur in praxis. These deviations can mainly be attributed to the faulty separation of effects in the distinct machine components, such as the rotor, stator, and bearings. This paper introduces an optimization-aided modeling approach based on the induction machine’s simple equivalent circuit representation. The method is validated by measurement data obtained from many induction machines with various axial lengths and winding configurations.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimization-aided approach to parametrize scalable models of induction machines in speed variable drives\",\"authors\":\"Florian Pauli, Martin Hafner, Kay Hameyer\",\"doi\":\"10.3233/jae-230216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate and time-saving prediction of essential machine variables (output power, torque, and efficiency) is crucial for manufacturers offering a wide power range of induction machines. Many motor variants are typically produced by axially scaling and rewinding the machine. Rescaling proceduresof electromagnetic models of induction machines are in everyday use and well known. However, while a high accuracy can be achieved by rescaling in theory, more significant deviations between simulated and measured output parameters of the realized scaled device occur in praxis. These deviations can mainly be attributed to the faulty separation of effects in the distinct machine components, such as the rotor, stator, and bearings. This paper introduces an optimization-aided modeling approach based on the induction machine’s simple equivalent circuit representation. The method is validated by measurement data obtained from many induction machines with various axial lengths and winding configurations.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230216\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230216","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对于提供大功率感应电机的制造商来说,准确、省时地预测基本机器变量(输出功率、扭矩和效率)至关重要。许多电机变体通常是通过对机器进行轴向缩放和重绕来生产的。感应电机电磁模型的重缩放程序在日常应用中广为人知。然而,虽然在理论上重新缩放可以达到很高的精度,但在实际应用中,已缩放设备的模拟输出参数与测量输出参数之间会出现较大偏差。这些偏差主要归因于转子、定子和轴承等不同机器部件的效应分离有误。本文介绍了一种基于感应机简单等效电路表示法的优化辅助建模方法。从许多具有不同轴向长度和绕组配置的感应机中获得的测量数据对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An optimization-aided approach to parametrize scalable models of induction machines in speed variable drives
The accurate and time-saving prediction of essential machine variables (output power, torque, and efficiency) is crucial for manufacturers offering a wide power range of induction machines. Many motor variants are typically produced by axially scaling and rewinding the machine. Rescaling proceduresof electromagnetic models of induction machines are in everyday use and well known. However, while a high accuracy can be achieved by rescaling in theory, more significant deviations between simulated and measured output parameters of the realized scaled device occur in praxis. These deviations can mainly be attributed to the faulty separation of effects in the distinct machine components, such as the rotor, stator, and bearings. This paper introduces an optimization-aided modeling approach based on the induction machine’s simple equivalent circuit representation. The method is validated by measurement data obtained from many induction machines with various axial lengths and winding configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
期刊最新文献
Optimization design of the modified SST based on adaptive genetic algorithm Influence of key design parameters on the critical speed of eddy current brake Numerical simulation of contact surface stress distribution based on stress-magnetization effect surface Optimization design and measurement of septum magnet with low leakage field Multi-objective optimization of permanent magnet motor based on Improved Salp Swarm Algorithm and Spearman correlation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1