{"title":"变速驱动装置中感应机可扩展模型的参数化优化辅助方法","authors":"Florian Pauli, Martin Hafner, Kay Hameyer","doi":"10.3233/jae-230216","DOIUrl":null,"url":null,"abstract":"The accurate and time-saving prediction of essential machine variables (output power, torque, and efficiency) is crucial for manufacturers offering a wide power range of induction machines. Many motor variants are typically produced by axially scaling and rewinding the machine. Rescaling proceduresof electromagnetic models of induction machines are in everyday use and well known. However, while a high accuracy can be achieved by rescaling in theory, more significant deviations between simulated and measured output parameters of the realized scaled device occur in praxis. These deviations can mainly be attributed to the faulty separation of effects in the distinct machine components, such as the rotor, stator, and bearings. This paper introduces an optimization-aided modeling approach based on the induction machine’s simple equivalent circuit representation. The method is validated by measurement data obtained from many induction machines with various axial lengths and winding configurations.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimization-aided approach to parametrize scalable models of induction machines in speed variable drives\",\"authors\":\"Florian Pauli, Martin Hafner, Kay Hameyer\",\"doi\":\"10.3233/jae-230216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate and time-saving prediction of essential machine variables (output power, torque, and efficiency) is crucial for manufacturers offering a wide power range of induction machines. Many motor variants are typically produced by axially scaling and rewinding the machine. Rescaling proceduresof electromagnetic models of induction machines are in everyday use and well known. However, while a high accuracy can be achieved by rescaling in theory, more significant deviations between simulated and measured output parameters of the realized scaled device occur in praxis. These deviations can mainly be attributed to the faulty separation of effects in the distinct machine components, such as the rotor, stator, and bearings. This paper introduces an optimization-aided modeling approach based on the induction machine’s simple equivalent circuit representation. The method is validated by measurement data obtained from many induction machines with various axial lengths and winding configurations.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230216\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230216","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An optimization-aided approach to parametrize scalable models of induction machines in speed variable drives
The accurate and time-saving prediction of essential machine variables (output power, torque, and efficiency) is crucial for manufacturers offering a wide power range of induction machines. Many motor variants are typically produced by axially scaling and rewinding the machine. Rescaling proceduresof electromagnetic models of induction machines are in everyday use and well known. However, while a high accuracy can be achieved by rescaling in theory, more significant deviations between simulated and measured output parameters of the realized scaled device occur in praxis. These deviations can mainly be attributed to the faulty separation of effects in the distinct machine components, such as the rotor, stator, and bearings. This paper introduces an optimization-aided modeling approach based on the induction machine’s simple equivalent circuit representation. The method is validated by measurement data obtained from many induction machines with various axial lengths and winding configurations.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.