Ning Gu, Qingxiao Liu, Qichao Liu, Ying Ren, Xiaodong Liu, Youyi Sun, Yang Cao
{"title":"用于骨修复的新型生物活性粘合剂的超快凝固率","authors":"Ning Gu, Qingxiao Liu, Qichao Liu, Ying Ren, Xiaodong Liu, Youyi Sun, Yang Cao","doi":"10.1007/s13726-024-01354-1","DOIUrl":null,"url":null,"abstract":"<div><p>Polymer bone binder has attracted lots of attention due to its facile preparation, biodegradability, and so on. However, achieving strong adhesion, easy preparation, and fast setting rate for polymer bone binding is still a great challenge. So, here, a new polymer bone binder is developed and prepared to simultaneously improve setting rate and strength. The bone binder is composed of polyethyleneglycol, ethylhydroacrylate, chitosan, and SiO<sub>2</sub> nanoparticles. It exhibits good biocompatibility and large bonding strength (ca. 2.0 MPa). Furthermore, the bone binder shows an ultra-fast setting rate (ca. 100 s), which is far faster than that reported in previous works. The bone binder is further evaluated to bond chicken bone, which exhibits a high binding force of 2.0 kgf in a short setting time of only 5.0 min. The good biocompatibility and the large bonding strength of the present bone binder are attributed to the green and environmentally friendly composition (e.g., cyanoacrylate, chitosan, polyethyleneglycol and SiO<sub>2</sub> nanoparticles) and cross-linking network between chitosan and SiO<sub>2</sub> nanoparticles. The ultra-fast setting process is attributed to the rapid polymerization of cyanoacrylate and the physical interaction of SiO<sub>2</sub> nanoparticles with chitosan and polyethyleneglycol. The work provides a new method to design and prepare high-performance bone binders for use in bone fracture repair.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 12","pages":"1667 - 1675"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-fast setting rate of a new bioactive binder for bone repair\",\"authors\":\"Ning Gu, Qingxiao Liu, Qichao Liu, Ying Ren, Xiaodong Liu, Youyi Sun, Yang Cao\",\"doi\":\"10.1007/s13726-024-01354-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polymer bone binder has attracted lots of attention due to its facile preparation, biodegradability, and so on. However, achieving strong adhesion, easy preparation, and fast setting rate for polymer bone binding is still a great challenge. So, here, a new polymer bone binder is developed and prepared to simultaneously improve setting rate and strength. The bone binder is composed of polyethyleneglycol, ethylhydroacrylate, chitosan, and SiO<sub>2</sub> nanoparticles. It exhibits good biocompatibility and large bonding strength (ca. 2.0 MPa). Furthermore, the bone binder shows an ultra-fast setting rate (ca. 100 s), which is far faster than that reported in previous works. The bone binder is further evaluated to bond chicken bone, which exhibits a high binding force of 2.0 kgf in a short setting time of only 5.0 min. The good biocompatibility and the large bonding strength of the present bone binder are attributed to the green and environmentally friendly composition (e.g., cyanoacrylate, chitosan, polyethyleneglycol and SiO<sub>2</sub> nanoparticles) and cross-linking network between chitosan and SiO<sub>2</sub> nanoparticles. The ultra-fast setting process is attributed to the rapid polymerization of cyanoacrylate and the physical interaction of SiO<sub>2</sub> nanoparticles with chitosan and polyethyleneglycol. The work provides a new method to design and prepare high-performance bone binders for use in bone fracture repair.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":601,\"journal\":{\"name\":\"Iranian Polymer Journal\",\"volume\":\"33 12\",\"pages\":\"1667 - 1675\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13726-024-01354-1\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01354-1","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Ultra-fast setting rate of a new bioactive binder for bone repair
Polymer bone binder has attracted lots of attention due to its facile preparation, biodegradability, and so on. However, achieving strong adhesion, easy preparation, and fast setting rate for polymer bone binding is still a great challenge. So, here, a new polymer bone binder is developed and prepared to simultaneously improve setting rate and strength. The bone binder is composed of polyethyleneglycol, ethylhydroacrylate, chitosan, and SiO2 nanoparticles. It exhibits good biocompatibility and large bonding strength (ca. 2.0 MPa). Furthermore, the bone binder shows an ultra-fast setting rate (ca. 100 s), which is far faster than that reported in previous works. The bone binder is further evaluated to bond chicken bone, which exhibits a high binding force of 2.0 kgf in a short setting time of only 5.0 min. The good biocompatibility and the large bonding strength of the present bone binder are attributed to the green and environmentally friendly composition (e.g., cyanoacrylate, chitosan, polyethyleneglycol and SiO2 nanoparticles) and cross-linking network between chitosan and SiO2 nanoparticles. The ultra-fast setting process is attributed to the rapid polymerization of cyanoacrylate and the physical interaction of SiO2 nanoparticles with chitosan and polyethyleneglycol. The work provides a new method to design and prepare high-performance bone binders for use in bone fracture repair.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.