在纳米氧化铜锌颗粒催化下用过氧化氢氧化去除水溶液中的氰化物

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water, Air, & Soil Pollution Pub Date : 2024-06-27 DOI:10.1007/s11270-024-07298-9
Abderrahamane Boutrif, Salima Chergui, Farid Halet, Abdelmalek Chergui, Lilya Boudriche, Aïssa Ould-Dris, Erwann Guénin, Boubekeur Nadjemi, Ahmed Reda Yeddou
{"title":"在纳米氧化铜锌颗粒催化下用过氧化氢氧化去除水溶液中的氰化物","authors":"Abderrahamane Boutrif, Salima Chergui, Farid Halet, Abdelmalek Chergui, Lilya Boudriche, Aïssa Ould-Dris, Erwann Guénin, Boubekeur Nadjemi, Ahmed Reda Yeddou","doi":"10.1007/s11270-024-07298-9","DOIUrl":null,"url":null,"abstract":"<p>This work is concerned with the cyanide removal from aqueous solution by oxidation with hydrogen peroxide H<sub>2</sub>O<sub>2</sub> catalyzed by copper zinc oxide (CuO-ZnO) nanoparticles prepared by co-precipitation method. The influences of catalyst dose, hydrogen peroxide concentration, temperature, and catalyst stability on cyanide removal were examined. The use of CuO-ZnO nanoparticles made it possible to increase the reaction rate, thus showing good catalytic activity. The cyanide removal percentage was increased after 75 minutes of reaction time from 70% to 100% by raising the catalyst dose from 0.25 g/L to 1.0 g/L. Increasing the temperature from 24 °C to 35 °C enhanced cyanide removal rate, the apparent activation energy was then found to be equal to 48 KJ/mol. The nanocatalyst was used again for four successive times and exhibited good stability. The kinetics of cyanide elimination was found to be pseudo-first order with respect to cyanide.</p>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyanide Removal from Aqueous Solution by Oxidation with Hydrogen Peroxide Catalyzed by Copper-Zinc Oxide Nanoparticles\",\"authors\":\"Abderrahamane Boutrif, Salima Chergui, Farid Halet, Abdelmalek Chergui, Lilya Boudriche, Aïssa Ould-Dris, Erwann Guénin, Boubekeur Nadjemi, Ahmed Reda Yeddou\",\"doi\":\"10.1007/s11270-024-07298-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work is concerned with the cyanide removal from aqueous solution by oxidation with hydrogen peroxide H<sub>2</sub>O<sub>2</sub> catalyzed by copper zinc oxide (CuO-ZnO) nanoparticles prepared by co-precipitation method. The influences of catalyst dose, hydrogen peroxide concentration, temperature, and catalyst stability on cyanide removal were examined. The use of CuO-ZnO nanoparticles made it possible to increase the reaction rate, thus showing good catalytic activity. The cyanide removal percentage was increased after 75 minutes of reaction time from 70% to 100% by raising the catalyst dose from 0.25 g/L to 1.0 g/L. Increasing the temperature from 24 °C to 35 °C enhanced cyanide removal rate, the apparent activation energy was then found to be equal to 48 KJ/mol. The nanocatalyst was used again for four successive times and exhibited good stability. The kinetics of cyanide elimination was found to be pseudo-first order with respect to cyanide.</p>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1007/s11270-024-07298-9\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1007/s11270-024-07298-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究关注在共沉淀法制备的纳米氧化铜锌(CuO-ZnO)颗粒催化下,用过氧化氢 H2O2 氧化去除水溶液中的氰化物。研究了催化剂剂量、过氧化氢浓度、温度和催化剂稳定性对氰化物去除的影响。使用 CuO-ZnO 纳米粒子可以提高反应速率,从而显示出良好的催化活性。将催化剂剂量从 0.25 克/升提高到 1.0 克/升,反应 75 分钟后氰化物去除率从 70% 提高到 100%。将温度从 24 °C 提高到 35 °C,氰化物的去除率提高了,表观活化能等于 48 KJ/mol。该纳米催化剂连续使用了四次,表现出良好的稳定性。研究发现,氰化物的消除动力学与氰化物的消除动力学呈假一阶关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cyanide Removal from Aqueous Solution by Oxidation with Hydrogen Peroxide Catalyzed by Copper-Zinc Oxide Nanoparticles

This work is concerned with the cyanide removal from aqueous solution by oxidation with hydrogen peroxide H2O2 catalyzed by copper zinc oxide (CuO-ZnO) nanoparticles prepared by co-precipitation method. The influences of catalyst dose, hydrogen peroxide concentration, temperature, and catalyst stability on cyanide removal were examined. The use of CuO-ZnO nanoparticles made it possible to increase the reaction rate, thus showing good catalytic activity. The cyanide removal percentage was increased after 75 minutes of reaction time from 70% to 100% by raising the catalyst dose from 0.25 g/L to 1.0 g/L. Increasing the temperature from 24 °C to 35 °C enhanced cyanide removal rate, the apparent activation energy was then found to be equal to 48 KJ/mol. The nanocatalyst was used again for four successive times and exhibited good stability. The kinetics of cyanide elimination was found to be pseudo-first order with respect to cyanide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
期刊最新文献
Are bioassays and Analytical Methods Equivalent to the Application of Herbicide Leaching to Sugarcane Crops? Sono-assisted Adsorption of Methyl Violet 2B Using a Magnetic Kaolin/TiO2/γ-Fe2O3 Nano Composite Phytoremediation of Chromium (VI)-Contaminated Soil by Euphorbia tithymaloides L. and Metagenomic Analysis of Rhizospheric Bacterial Community Exploring Microplastic Distribution in Agricultural Soils and Health Risk Evaluation Simultaneous Biodegradation of Linear Alkylbenzensulfonate in Anaerobic Reactors, in Two Stages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1