金融应用大型语言模型调查:进展、前景与挑战

Yuqi Nie, Yaxuan Kong, Xiaowen Dong, John M. Mulvey, H. Vincent Poor, Qingsong Wen, Stefan Zohren
{"title":"金融应用大型语言模型调查:进展、前景与挑战","authors":"Yuqi Nie, Yaxuan Kong, Xiaowen Dong, John M. Mulvey, H. Vincent Poor, Qingsong Wen, Stefan Zohren","doi":"arxiv-2406.11903","DOIUrl":null,"url":null,"abstract":"Recent advances in large language models (LLMs) have unlocked novel\nopportunities for machine learning applications in the financial domain. These\nmodels have demonstrated remarkable capabilities in understanding context,\nprocessing vast amounts of data, and generating human-preferred contents. In\nthis survey, we explore the application of LLMs on various financial tasks,\nfocusing on their potential to transform traditional practices and drive\ninnovation. We provide a discussion of the progress and advantages of LLMs in\nfinancial contexts, analyzing their advanced technologies as well as\nprospective capabilities in contextual understanding, transfer learning\nflexibility, complex emotion detection, etc. We then highlight this survey for\ncategorizing the existing literature into key application areas, including\nlinguistic tasks, sentiment analysis, financial time series, financial\nreasoning, agent-based modeling, and other applications. For each application\narea, we delve into specific methodologies, such as textual analysis,\nknowledge-based analysis, forecasting, data augmentation, planning, decision\nsupport, and simulations. Furthermore, a comprehensive collection of datasets,\nmodel assets, and useful codes associated with mainstream applications are\npresented as resources for the researchers and practitioners. Finally, we\noutline the challenges and opportunities for future research, particularly\nemphasizing a number of distinctive aspects in this field. We hope our work can\nhelp facilitate the adoption and further development of LLMs in the financial\nsector.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges\",\"authors\":\"Yuqi Nie, Yaxuan Kong, Xiaowen Dong, John M. Mulvey, H. Vincent Poor, Qingsong Wen, Stefan Zohren\",\"doi\":\"arxiv-2406.11903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in large language models (LLMs) have unlocked novel\\nopportunities for machine learning applications in the financial domain. These\\nmodels have demonstrated remarkable capabilities in understanding context,\\nprocessing vast amounts of data, and generating human-preferred contents. In\\nthis survey, we explore the application of LLMs on various financial tasks,\\nfocusing on their potential to transform traditional practices and drive\\ninnovation. We provide a discussion of the progress and advantages of LLMs in\\nfinancial contexts, analyzing their advanced technologies as well as\\nprospective capabilities in contextual understanding, transfer learning\\nflexibility, complex emotion detection, etc. We then highlight this survey for\\ncategorizing the existing literature into key application areas, including\\nlinguistic tasks, sentiment analysis, financial time series, financial\\nreasoning, agent-based modeling, and other applications. For each application\\narea, we delve into specific methodologies, such as textual analysis,\\nknowledge-based analysis, forecasting, data augmentation, planning, decision\\nsupport, and simulations. Furthermore, a comprehensive collection of datasets,\\nmodel assets, and useful codes associated with mainstream applications are\\npresented as resources for the researchers and practitioners. Finally, we\\noutline the challenges and opportunities for future research, particularly\\nemphasizing a number of distinctive aspects in this field. We hope our work can\\nhelp facilitate the adoption and further development of LLMs in the financial\\nsector.\",\"PeriodicalId\":501372,\"journal\":{\"name\":\"arXiv - QuantFin - General Finance\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - General Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.11903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.11903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLM)的最新进展为金融领域的机器学习应用带来了新的发展机遇。这些模型在理解上下文、处理海量数据和生成人类偏好的内容方面表现出了非凡的能力。在这份调查报告中,我们探讨了 LLM 在各种金融任务中的应用,重点关注它们在改变传统做法和推动创新方面的潜力。我们讨论了 LLM 在金融领域的进展和优势,分析了它们在上下文理解、迁移学习灵活性、复杂情绪检测等方面的先进技术和前瞻能力。然后,我们重点介绍了这份调查报告,并将现有文献归类为关键应用领域,包括语言任务、情感分析、金融时间序列、金融推理、基于代理的建模以及其他应用。针对每个应用领域,我们深入探讨了具体方法,如文本分析、基于知识的分析、预测、数据增强、规划、决策支持和模拟。此外,我们还全面收集了与主流应用相关的数据集、模型资产和有用代码,作为研究人员和从业人员的资源。最后,我们概述了未来研究的挑战和机遇,特别强调了该领域的一些独特方面。我们希望我们的工作能有助于促进 LLM 在金融领域的应用和进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges
Recent advances in large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain. These models have demonstrated remarkable capabilities in understanding context, processing vast amounts of data, and generating human-preferred contents. In this survey, we explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation. We provide a discussion of the progress and advantages of LLMs in financial contexts, analyzing their advanced technologies as well as prospective capabilities in contextual understanding, transfer learning flexibility, complex emotion detection, etc. We then highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications. For each application area, we delve into specific methodologies, such as textual analysis, knowledge-based analysis, forecasting, data augmentation, planning, decision support, and simulations. Furthermore, a comprehensive collection of datasets, model assets, and useful codes associated with mainstream applications are presented as resources for the researchers and practitioners. Finally, we outline the challenges and opportunities for future research, particularly emphasizing a number of distinctive aspects in this field. We hope our work can help facilitate the adoption and further development of LLMs in the financial sector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Asymmetry Index: The View of Market Analysts Market Failures of Carbon Trading Hydrogen Development in China and the EU: A Recommended Tian Ji's Horse Racing Strategy Applying the Nash Bargaining Solution for a Reasonable Royalty II Auction theory and demography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1