利用科恩达效应提高涡环推进器的性能

IF 2.7 4区 工程技术 Q2 ENGINEERING, CIVIL Journal of Marine Science and Technology Pub Date : 2024-06-21 DOI:10.1007/s00773-024-01014-2
Woochan Seok, Young Min Heo, Shin Hyung Rhee
{"title":"利用科恩达效应提高涡环推进器的性能","authors":"Woochan Seok, Young Min Heo, Shin Hyung Rhee","doi":"10.1007/s00773-024-01014-2","DOIUrl":null,"url":null,"abstract":"<p>A vortex ring thruster (VRT) is a propulsion device in which a piston pushes fluid and thrusts it in reaction. As the fluid inside a VRT is moving, the boundary layer near the wall at the edge of the exit surface of a VRT separates and rolls up into a vortex ring. In this paper, we performed performance analysis on a regular VRT and a VRT enhanced by the Coanda effect (hereafter referred to as a CoVoRT) on axisymmetric geometry. A CoVoRT consists of two jets: a primary jet and a Coanda jet. The primary jet has a relatively large volume flow rate compared to the Coanda jet, and the Coanda jet attracts the surrounding fluid by flowing along the curved surface at a relatively small flow rate. The present study evaluates the propulsion performance in two ways using SNUFOAM. This software was developed based on OpenFOAM, which is an open-source computational fluid dynamics (CFD) toolkit and specialized for naval hydrodynamics. The first one quantifies the propulsion performance by calculating the ratio of energy input and energy output generated by two jets during a stroke of the piston motion. The second one is to observe the evolution and pinch-off process of a vortex ring with formation time, which is a non-dimensional time scale. The comparison of propulsion performance was conducted with changes in the curvature of the Coanda jet, changes in the length of the Coanda jet exit, and changes in the Coanda jet velocity and piston stroke ratio. For quantitative evaluation of propulsion performance, the propulsion performance evaluation index (PPEI) was introduced. The results showed that the PPEI of a CoVoRT was improved by about 50% compared to that of a VRT, and it was confirmed that the dynamic characteristics of a CoVoRT’s vortex ring were superior to those of a VRT in terms of propulsion performance.</p>","PeriodicalId":16334,"journal":{"name":"Journal of Marine Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance enhancement of a vortex ring thruster by adopting the Coanda effect\",\"authors\":\"Woochan Seok, Young Min Heo, Shin Hyung Rhee\",\"doi\":\"10.1007/s00773-024-01014-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A vortex ring thruster (VRT) is a propulsion device in which a piston pushes fluid and thrusts it in reaction. As the fluid inside a VRT is moving, the boundary layer near the wall at the edge of the exit surface of a VRT separates and rolls up into a vortex ring. In this paper, we performed performance analysis on a regular VRT and a VRT enhanced by the Coanda effect (hereafter referred to as a CoVoRT) on axisymmetric geometry. A CoVoRT consists of two jets: a primary jet and a Coanda jet. The primary jet has a relatively large volume flow rate compared to the Coanda jet, and the Coanda jet attracts the surrounding fluid by flowing along the curved surface at a relatively small flow rate. The present study evaluates the propulsion performance in two ways using SNUFOAM. This software was developed based on OpenFOAM, which is an open-source computational fluid dynamics (CFD) toolkit and specialized for naval hydrodynamics. The first one quantifies the propulsion performance by calculating the ratio of energy input and energy output generated by two jets during a stroke of the piston motion. The second one is to observe the evolution and pinch-off process of a vortex ring with formation time, which is a non-dimensional time scale. The comparison of propulsion performance was conducted with changes in the curvature of the Coanda jet, changes in the length of the Coanda jet exit, and changes in the Coanda jet velocity and piston stroke ratio. For quantitative evaluation of propulsion performance, the propulsion performance evaluation index (PPEI) was introduced. The results showed that the PPEI of a CoVoRT was improved by about 50% compared to that of a VRT, and it was confirmed that the dynamic characteristics of a CoVoRT’s vortex ring were superior to those of a VRT in terms of propulsion performance.</p>\",\"PeriodicalId\":16334,\"journal\":{\"name\":\"Journal of Marine Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00773-024-01014-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00773-024-01014-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

涡环推进器(VRT)是一种推进装置,其中活塞推动流体并反作用于流体。当 VRT 内的流体运动时,VRT 出口表面边缘靠近壁面的边界层会分离并卷成涡环。本文对轴对称几何形状上的普通 VRT 和利用科恩达效应增强的 VRT(以下简称 CoVoRT)进行了性能分析。CoVoRT 由两个射流组成:一个主射流和一个科恩达射流。与科恩达射流相比,主射流的体积流量相对较大,而科恩达射流则以相对较小的流量沿曲面流动,吸引周围流体。本研究使用 SNUFOAM 从两个方面对推进性能进行了评估。该软件是基于 OpenFOAM 开发的,OpenFOAM 是一个开源计算流体动力学(CFD)工具包,专门用于舰船流体力学。第一种方法是通过计算活塞运动冲程中两个喷流产生的能量输入和能量输出的比率来量化推进性能。第二种是观察涡环随形成时间(非一维时间尺度)的演变和掐断过程。在改变科恩达射流曲率、改变科恩达射流出口长度、改变科恩达射流速度和活塞冲程比的情况下,对推进性能进行了比较。为了对推进性能进行定量评价,引入了推进性能评价指数(PPEI)。结果表明,与 VRT 相比,CoVoRT 的 PPEI 提高了约 50%,并证实 CoVoRT 涡流环的动态特性在推进性能方面优于 VRT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance enhancement of a vortex ring thruster by adopting the Coanda effect

A vortex ring thruster (VRT) is a propulsion device in which a piston pushes fluid and thrusts it in reaction. As the fluid inside a VRT is moving, the boundary layer near the wall at the edge of the exit surface of a VRT separates and rolls up into a vortex ring. In this paper, we performed performance analysis on a regular VRT and a VRT enhanced by the Coanda effect (hereafter referred to as a CoVoRT) on axisymmetric geometry. A CoVoRT consists of two jets: a primary jet and a Coanda jet. The primary jet has a relatively large volume flow rate compared to the Coanda jet, and the Coanda jet attracts the surrounding fluid by flowing along the curved surface at a relatively small flow rate. The present study evaluates the propulsion performance in two ways using SNUFOAM. This software was developed based on OpenFOAM, which is an open-source computational fluid dynamics (CFD) toolkit and specialized for naval hydrodynamics. The first one quantifies the propulsion performance by calculating the ratio of energy input and energy output generated by two jets during a stroke of the piston motion. The second one is to observe the evolution and pinch-off process of a vortex ring with formation time, which is a non-dimensional time scale. The comparison of propulsion performance was conducted with changes in the curvature of the Coanda jet, changes in the length of the Coanda jet exit, and changes in the Coanda jet velocity and piston stroke ratio. For quantitative evaluation of propulsion performance, the propulsion performance evaluation index (PPEI) was introduced. The results showed that the PPEI of a CoVoRT was improved by about 50% compared to that of a VRT, and it was confirmed that the dynamic characteristics of a CoVoRT’s vortex ring were superior to those of a VRT in terms of propulsion performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Marine Science and Technology
Journal of Marine Science and Technology 工程技术-工程:海洋
CiteScore
5.60
自引率
3.80%
发文量
47
审稿时长
7.5 months
期刊介绍: The Journal of Marine Science and Technology (JMST), presently indexed in EI and SCI Expanded, publishes original, high-quality, peer-reviewed research papers on marine studies including engineering, pure and applied science, and technology. The full text of the published papers is also made accessible at the JMST website to allow a rapid circulation.
期刊最新文献
Statistical prediction for nonlinear failure function of linear loads: application to plate buckling in ship structure Nonlinear steering control law under input magnitude and rate constraints with exponential convergence Practical method for evaluating wind influence on autonomous ship operations (2nd report) Automatic docking with extended dynamic positioning Effectiveness assessment and simulation of a wearable guiding device for ship evacuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1