基于三维顶点中心有限元算法的高精度重力场和重力梯度前向建模

IF 3.7 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Central South University Pub Date : 2024-06-24 DOI:10.1007/s11771-024-5647-y
Xiao-zhong Tong, Ya Sun, Ji-wen Huang, Jian-xin Liu
{"title":"基于三维顶点中心有限元算法的高精度重力场和重力梯度前向建模","authors":"Xiao-zhong Tong, Ya Sun, Ji-wen Huang, Jian-xin Liu","doi":"10.1007/s11771-024-5647-y","DOIUrl":null,"url":null,"abstract":"<p>Gravity anomalies generated by density non-uniformity are governed by the 3D Poisson equation. Most existing forward methods for such anomalies rely on integral techniques and cell-centered numerical approaches. Once the gravitational potential is calculated, these numerical schemes will inevitably lose high accuracy. To alleviate this problem, an accurate and efficient high-order vertex-centered finite-element scheme for simulating 3D gravity anomalies is presented. Firstly, the forward algorithm is formulated through the vertex-centered finite element with hexahedral meshes. The biconjugate gradient stabilized algorithm can solve the linear equation system combined with an incomplete LU factorization (ILU-BICSSTAB). Secondly, a high-degree Lagrange interpolating scheme is applied to achieve the first-derivate and second-derivate gravitational potential. Finally, a 3D cubic density model is used to test the accuracy of the vertex-centered finite-element algorithm, and thin vertical rectangular prisms and real example for flexibility. All numerical results indicate that our high-order vertex-centered finite-element method can provide an accurate approximation for the gravity field vector and the gravity gradient tensor. Meanwhile, compared to the cell-centered numerical algorithm, the high-order vertex-centered finite element scheme exhibits higher efficiency and accuracy in simulating 3D gravity anomalies.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-accuracy gravity field and gravity gradient forward modelling based on 3D vertex-centered finite-element algorithm\",\"authors\":\"Xiao-zhong Tong, Ya Sun, Ji-wen Huang, Jian-xin Liu\",\"doi\":\"10.1007/s11771-024-5647-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gravity anomalies generated by density non-uniformity are governed by the 3D Poisson equation. Most existing forward methods for such anomalies rely on integral techniques and cell-centered numerical approaches. Once the gravitational potential is calculated, these numerical schemes will inevitably lose high accuracy. To alleviate this problem, an accurate and efficient high-order vertex-centered finite-element scheme for simulating 3D gravity anomalies is presented. Firstly, the forward algorithm is formulated through the vertex-centered finite element with hexahedral meshes. The biconjugate gradient stabilized algorithm can solve the linear equation system combined with an incomplete LU factorization (ILU-BICSSTAB). Secondly, a high-degree Lagrange interpolating scheme is applied to achieve the first-derivate and second-derivate gravitational potential. Finally, a 3D cubic density model is used to test the accuracy of the vertex-centered finite-element algorithm, and thin vertical rectangular prisms and real example for flexibility. All numerical results indicate that our high-order vertex-centered finite-element method can provide an accurate approximation for the gravity field vector and the gravity gradient tensor. Meanwhile, compared to the cell-centered numerical algorithm, the high-order vertex-centered finite element scheme exhibits higher efficiency and accuracy in simulating 3D gravity anomalies.</p>\",\"PeriodicalId\":15231,\"journal\":{\"name\":\"Journal of Central South University\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Central South University\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11771-024-5647-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5647-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

密度不均匀性产生的重力异常受三维泊松方程控制。针对此类异常现象的现有前向方法大多依赖积分技术和以单元为中心的数值方法。一旦计算出重力势能,这些数值方案将不可避免地失去高精度。为了缓解这一问题,本文提出了一种用于模拟三维重力异常的精确、高效的高阶顶点中心有限元方案。首先,通过六面体网格的顶点中心有限元制定了前向算法。双共轭梯度稳定算法可结合不完全 LU 因子化(ILU-BICSSTAB)求解线性方程组。其次,应用高阶拉格朗日插值方案实现引力势的一阶衍生和二阶衍生。最后,使用三维立方体密度模型来测试顶点为中心的有限元算法的准确性,并使用薄垂直矩形棱柱和实际例子来测试其灵活性。所有数值结果表明,我们的高阶顶点为中心有限元方法可以提供重力场矢量和重力梯度张量的精确近似。同时,与以单元为中心的数值算法相比,高阶顶点为中心的有限元方案在模拟三维重力异常时表现出更高的效率和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-accuracy gravity field and gravity gradient forward modelling based on 3D vertex-centered finite-element algorithm

Gravity anomalies generated by density non-uniformity are governed by the 3D Poisson equation. Most existing forward methods for such anomalies rely on integral techniques and cell-centered numerical approaches. Once the gravitational potential is calculated, these numerical schemes will inevitably lose high accuracy. To alleviate this problem, an accurate and efficient high-order vertex-centered finite-element scheme for simulating 3D gravity anomalies is presented. Firstly, the forward algorithm is formulated through the vertex-centered finite element with hexahedral meshes. The biconjugate gradient stabilized algorithm can solve the linear equation system combined with an incomplete LU factorization (ILU-BICSSTAB). Secondly, a high-degree Lagrange interpolating scheme is applied to achieve the first-derivate and second-derivate gravitational potential. Finally, a 3D cubic density model is used to test the accuracy of the vertex-centered finite-element algorithm, and thin vertical rectangular prisms and real example for flexibility. All numerical results indicate that our high-order vertex-centered finite-element method can provide an accurate approximation for the gravity field vector and the gravity gradient tensor. Meanwhile, compared to the cell-centered numerical algorithm, the high-order vertex-centered finite element scheme exhibits higher efficiency and accuracy in simulating 3D gravity anomalies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Central South University
Journal of Central South University METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.10
自引率
6.80%
发文量
242
审稿时长
2-4 weeks
期刊介绍: Focuses on the latest research achievements in mining and metallurgy Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering
期刊最新文献
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion Influence of rare earth element erbium on microstructures and properties of as-cast 8030 aluminum alloy The improvement of large-scale-region landslide susceptibility mapping accuracy by transfer learning Energy evolution model and energy response characteristics of freeze-thaw damaged sandstone under uniaxial compression A hybrid ventilation scheme applied to bi-directional excavation tunnel construction with a long inclined shaft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1