Fadilul-lah Yassaanah Issahaku, Ke Lu, Fang Xianwen, Sumaiya Bashiru Danwana, Husein Mohammed Bandago
{"title":"基于语义的流程挖掘技术概览:趋势和未来方向","authors":"Fadilul-lah Yassaanah Issahaku, Ke Lu, Fang Xianwen, Sumaiya Bashiru Danwana, Husein Mohammed Bandago","doi":"10.1007/s10115-024-02147-x","DOIUrl":null,"url":null,"abstract":"<p>Process mining algorithms essentially reflect the execution behavior of events in an event log for conformance checking, model discovery, or enhancement. Domain experts have developed several process mining algorithms based on theoretical frameworks such as linear integer programming, heuristics, and genetic algorithms, region-based and semantic-based approaches. The idea is to generate insightful representations of these processes of information systems to enable process mining practitioners to gain insight into their systems. Recently, there has been a shift toward semantic-based approaches for process mining since they not only discover enhanced models but also emphasize context. To this effect, this paper conducts a comprehensive review of 30 articles on semantic process mining techniques. It was found that 44.7% of all works used semantics for process discovery, 23.7% for model enhancement, and conformance checking was the least with 10.5%. We further indicate the benefits and contributions of these methods to process mining. Challenges, opportunities, and prospective future research areas are also discussed.\n</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An overview of semantic-based process mining techniques: trends and future directions\",\"authors\":\"Fadilul-lah Yassaanah Issahaku, Ke Lu, Fang Xianwen, Sumaiya Bashiru Danwana, Husein Mohammed Bandago\",\"doi\":\"10.1007/s10115-024-02147-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Process mining algorithms essentially reflect the execution behavior of events in an event log for conformance checking, model discovery, or enhancement. Domain experts have developed several process mining algorithms based on theoretical frameworks such as linear integer programming, heuristics, and genetic algorithms, region-based and semantic-based approaches. The idea is to generate insightful representations of these processes of information systems to enable process mining practitioners to gain insight into their systems. Recently, there has been a shift toward semantic-based approaches for process mining since they not only discover enhanced models but also emphasize context. To this effect, this paper conducts a comprehensive review of 30 articles on semantic process mining techniques. It was found that 44.7% of all works used semantics for process discovery, 23.7% for model enhancement, and conformance checking was the least with 10.5%. We further indicate the benefits and contributions of these methods to process mining. Challenges, opportunities, and prospective future research areas are also discussed.\\n</p>\",\"PeriodicalId\":54749,\"journal\":{\"name\":\"Knowledge and Information Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10115-024-02147-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02147-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An overview of semantic-based process mining techniques: trends and future directions
Process mining algorithms essentially reflect the execution behavior of events in an event log for conformance checking, model discovery, or enhancement. Domain experts have developed several process mining algorithms based on theoretical frameworks such as linear integer programming, heuristics, and genetic algorithms, region-based and semantic-based approaches. The idea is to generate insightful representations of these processes of information systems to enable process mining practitioners to gain insight into their systems. Recently, there has been a shift toward semantic-based approaches for process mining since they not only discover enhanced models but also emphasize context. To this effect, this paper conducts a comprehensive review of 30 articles on semantic process mining techniques. It was found that 44.7% of all works used semantics for process discovery, 23.7% for model enhancement, and conformance checking was the least with 10.5%. We further indicate the benefits and contributions of these methods to process mining. Challenges, opportunities, and prospective future research areas are also discussed.
期刊介绍:
Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.