用于增量推荐的潜在侧信息动态增强技术

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge and Information Systems Pub Date : 2024-06-26 DOI:10.1007/s10115-024-02165-9
Jing Zhang, Jin Shi, Jingsheng Duan, Yonggong Ren
{"title":"用于增量推荐的潜在侧信息动态增强技术","authors":"Jing Zhang, Jin Shi, Jingsheng Duan, Yonggong Ren","doi":"10.1007/s10115-024-02165-9","DOIUrl":null,"url":null,"abstract":"<p>The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interaction data is often afflicted by substantial noise and invalid samples, presenting the following key challenges for incremental model updating: (1) how to effectively extract valuable new knowledge from interaction data at the current time-step to ensure model accuracy and timeliness, and (2) how to safeguard against the catastrophic forgetting of long-term stable preference information, thus preserving the model’s sensitivity during cold-starts. In response to these challenges, we propose the Incremental Recommendation with Stable Latent Side-information Updating (SIIFR). This model employs a side-information augmenter to extract valuable latent side-information from user interaction behavior at time-step <i>T</i>, thereby sidestepping the interference caused by noisy interaction data and acquiring stable user preference. Moreover, the model utilizes rough interaction data at time-step <span>\\(T+1\\)</span>, in conjunction with existing side-information enhancements to achieve incremental updates of latent preferences, thereby ensuring the model’s efficacy during cold-start. Furthermore, SIIFR leverages the change rate in user latent side-information to mitigate catastrophic forgetting that results in the loss of long-term stable preference information. The effectiveness of the proposed model is validated and compared against existing models using four popular incremental datasets. The model code can be achieved at: https://github.com/LNNU-computer-research-526/FR-sii.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"245 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent side-information dynamic augmentation for incremental recommendation\",\"authors\":\"Jing Zhang, Jin Shi, Jingsheng Duan, Yonggong Ren\",\"doi\":\"10.1007/s10115-024-02165-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interaction data is often afflicted by substantial noise and invalid samples, presenting the following key challenges for incremental model updating: (1) how to effectively extract valuable new knowledge from interaction data at the current time-step to ensure model accuracy and timeliness, and (2) how to safeguard against the catastrophic forgetting of long-term stable preference information, thus preserving the model’s sensitivity during cold-starts. In response to these challenges, we propose the Incremental Recommendation with Stable Latent Side-information Updating (SIIFR). This model employs a side-information augmenter to extract valuable latent side-information from user interaction behavior at time-step <i>T</i>, thereby sidestepping the interference caused by noisy interaction data and acquiring stable user preference. Moreover, the model utilizes rough interaction data at time-step <span>\\\\(T+1\\\\)</span>, in conjunction with existing side-information enhancements to achieve incremental updates of latent preferences, thereby ensuring the model’s efficacy during cold-start. Furthermore, SIIFR leverages the change rate in user latent side-information to mitigate catastrophic forgetting that results in the loss of long-term stable preference information. The effectiveness of the proposed model is validated and compared against existing models using four popular incremental datasets. The model code can be achieved at: https://github.com/LNNU-computer-research-526/FR-sii.</p>\",\"PeriodicalId\":54749,\"journal\":{\"name\":\"Knowledge and Information Systems\",\"volume\":\"245 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10115-024-02165-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02165-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

增量推荐是指通过从当前时间步骤的交互数据中提取信息来更新现有模型,目的是在保持模型准确性的同时解决参数依赖性和训练效率低下等限制因素。然而,实时用户交互数据往往存在大量噪声和无效样本,这给增量模型更新带来了以下关键挑战:(1) 如何在当前时间步有效地从交互数据中提取有价值的新知识,以确保模型的准确性和及时性;(2) 如何防止长期稳定偏好信息的灾难性遗忘,从而在冷启动时保持模型的灵敏度。为了应对这些挑战,我们提出了稳定潜在侧面信息更新增量推荐模型(SIIFR)。该模型利用侧信息增强器从时间步 T 的用户交互行为中提取有价值的潜在侧信息,从而避开噪声交互数据的干扰,获得稳定的用户偏好。此外,该模型还利用时间步(T+1)的粗略交互数据,结合现有的侧信息增强器,实现潜在偏好的增量更新,从而确保模型在冷启动期间的有效性。此外,SIIFR 还能利用用户潜在侧信息的变化率来减轻灾难性遗忘导致的长期稳定偏好信息丢失。我们使用四种流行的增量数据集对所提出模型的有效性进行了验证,并与现有模型进行了比较。模型代码见:https://github.com/LNNU-computer-research-526/FR-sii。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Latent side-information dynamic augmentation for incremental recommendation

The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interaction data is often afflicted by substantial noise and invalid samples, presenting the following key challenges for incremental model updating: (1) how to effectively extract valuable new knowledge from interaction data at the current time-step to ensure model accuracy and timeliness, and (2) how to safeguard against the catastrophic forgetting of long-term stable preference information, thus preserving the model’s sensitivity during cold-starts. In response to these challenges, we propose the Incremental Recommendation with Stable Latent Side-information Updating (SIIFR). This model employs a side-information augmenter to extract valuable latent side-information from user interaction behavior at time-step T, thereby sidestepping the interference caused by noisy interaction data and acquiring stable user preference. Moreover, the model utilizes rough interaction data at time-step \(T+1\), in conjunction with existing side-information enhancements to achieve incremental updates of latent preferences, thereby ensuring the model’s efficacy during cold-start. Furthermore, SIIFR leverages the change rate in user latent side-information to mitigate catastrophic forgetting that results in the loss of long-term stable preference information. The effectiveness of the proposed model is validated and compared against existing models using four popular incremental datasets. The model code can be achieved at: https://github.com/LNNU-computer-research-526/FR-sii.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge and Information Systems
Knowledge and Information Systems 工程技术-计算机:人工智能
CiteScore
5.70
自引率
7.40%
发文量
152
审稿时长
7.2 months
期刊介绍: Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.
期刊最新文献
Dynamic evolution of causal relationships among cryptocurrencies: an analysis via Bayesian networks Deep multi-semantic fuzzy K-means with adaptive weight adjustment Class incremental named entity recognition without forgetting Spectral clustering with scale fairness constraints Supervised kernel-based multi-modal Bhattacharya distance learning for imbalanced data classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1