L. Cardozo Téllez, A. R. Chávez, A. R. Villalba, P. Chávez, L. Noguera, M. E. Galeano, N. Bobadilla, M. Reyes, Y. Mongelós, M. M. Kohli
{"title":"首次报告巴拉圭小麦白粉病病原菌 Blumeria graminis f. sp.","authors":"L. Cardozo Téllez, A. R. Chávez, A. R. Villalba, P. Chávez, L. Noguera, M. E. Galeano, N. Bobadilla, M. Reyes, Y. Mongelós, M. M. Kohli","doi":"10.1007/s41348-024-00958-2","DOIUrl":null,"url":null,"abstract":"<p>Wheat powdery mildew is caused by the fungus <i>Blumeria graminis</i> f.sp. <i>tritici</i> which can lead up to 40% of losses in the grain production. Chemical treatment with strobilurins (Quinone outside inhibitors—QoI) is widely used to control the disease. However, a point mutation in the cytochrome b gene (G143A) of the fungus can provide resistance to strobilurins-based fungicides. Five field samples of the fungus were collected from wheat infected plants, and DNA was extracted for the analysis. The bioassay indicated that all samples were resistant to the strobilurin azoxystrobin 50% (Amistar®, 500 g/kg) in in vivo tests. Molecular analysis (allele-specific PCR and sequenced amplicons) confirmed the presence of both alleles (resistant and susceptible to strobilurins) in all samples. To our knowledge, this is the first report of the presence of strobilurin resistance allele G143A in <i>Blumeria graminis</i> f.sp. <i>tritici</i> in Paraguay.</p>","PeriodicalId":16838,"journal":{"name":"Journal of Plant Diseases and Protection","volume":"12 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First report of strobilurin resistance in field samples of Blumeria graminis f. sp. tritici, causal agent of powdery mildew in wheat, in Paraguay\",\"authors\":\"L. Cardozo Téllez, A. R. Chávez, A. R. Villalba, P. Chávez, L. Noguera, M. E. Galeano, N. Bobadilla, M. Reyes, Y. Mongelós, M. M. Kohli\",\"doi\":\"10.1007/s41348-024-00958-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wheat powdery mildew is caused by the fungus <i>Blumeria graminis</i> f.sp. <i>tritici</i> which can lead up to 40% of losses in the grain production. Chemical treatment with strobilurins (Quinone outside inhibitors—QoI) is widely used to control the disease. However, a point mutation in the cytochrome b gene (G143A) of the fungus can provide resistance to strobilurins-based fungicides. Five field samples of the fungus were collected from wheat infected plants, and DNA was extracted for the analysis. The bioassay indicated that all samples were resistant to the strobilurin azoxystrobin 50% (Amistar®, 500 g/kg) in in vivo tests. Molecular analysis (allele-specific PCR and sequenced amplicons) confirmed the presence of both alleles (resistant and susceptible to strobilurins) in all samples. To our knowledge, this is the first report of the presence of strobilurin resistance allele G143A in <i>Blumeria graminis</i> f.sp. <i>tritici</i> in Paraguay.</p>\",\"PeriodicalId\":16838,\"journal\":{\"name\":\"Journal of Plant Diseases and Protection\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Diseases and Protection\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s41348-024-00958-2\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Diseases and Protection","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s41348-024-00958-2","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
小麦白粉病是由禾谷类白粉菌(Blumeria graminis f.sp. tritici)引起的,可导致高达 40% 的谷物产量损失。使用strobilurins(醌外抑制剂-QoI)进行化学处理被广泛用于控制该病害。然而,该真菌的细胞色素 b 基因(G143A)发生了点突变,从而对以石硫合剂为基础的杀菌剂产生抗性。从小麦感染植株上采集了五个田间真菌样本,并提取 DNA 进行分析。生物测定结果表明,在体内试验中,所有样本都对 50%的唑菌酯(Amistar®,500 克/千克)产生抗性。分子分析(等位基因特异性聚合酶链式反应和测序扩增子)证实,所有样本中都存在两种等位基因(对抗性和易感性)。据我们所知,这是巴拉圭首次报告三尖杉叶枯病菌存在抗稻瘟灵等位基因 G143A。
First report of strobilurin resistance in field samples of Blumeria graminis f. sp. tritici, causal agent of powdery mildew in wheat, in Paraguay
Wheat powdery mildew is caused by the fungus Blumeria graminis f.sp. tritici which can lead up to 40% of losses in the grain production. Chemical treatment with strobilurins (Quinone outside inhibitors—QoI) is widely used to control the disease. However, a point mutation in the cytochrome b gene (G143A) of the fungus can provide resistance to strobilurins-based fungicides. Five field samples of the fungus were collected from wheat infected plants, and DNA was extracted for the analysis. The bioassay indicated that all samples were resistant to the strobilurin azoxystrobin 50% (Amistar®, 500 g/kg) in in vivo tests. Molecular analysis (allele-specific PCR and sequenced amplicons) confirmed the presence of both alleles (resistant and susceptible to strobilurins) in all samples. To our knowledge, this is the first report of the presence of strobilurin resistance allele G143A in Blumeria graminis f.sp. tritici in Paraguay.
期刊介绍:
The Journal of Plant Diseases and Protection (JPDP) is an international scientific journal that publishes original research articles, reviews, short communications, position and opinion papers dealing with applied scientific aspects of plant pathology, plant health, plant protection and findings on newly occurring diseases and pests. "Special Issues" on coherent themes often arising from International Conferences are offered.