{"title":"下一代纳米生物传感器技术监测碳青霉烯耐药性,实现个性化医疗","authors":"Rahul Harikumar Lathakumari, Leela Kakithakara Vajravelu, Jayaprakash Thulukanam, Ashwin Kumar Narasimhan","doi":"10.1007/s12088-024-01337-z","DOIUrl":null,"url":null,"abstract":"<p>Carbapenem resistance represents a pressing public health concern, posing significant challenges due to limited treatment options and escalating mortality rates. In India, the prevalence of carbapenem resistance among Enterobacteriaceae ranges between 18 to 31%, causing severe infections such as bloodstream infections, pneumonia, urinary tract infections, and intra-abdominal infections. Accurate and timely diagnosis, particularly for Enterobacteriaceae producing carbapenemase, is crucial for effective clinical prophylaxis of critical care patients as they are considered as a last resort of therapy. Various genotypic and non-genotypic detection methods have been developed over the past decade, their limitations in terms of sensitivity and specificity have led the exploration of innovative technologies. Advanced opportunities for carbapenem resistance detection using microfluidic-based biosensors have miniaturized various biomedical devices. This enables the use of less sample and reagents, cheap pricing, automation, screening, and improved detection. Despite ongoing research and development, the adoption of these biosensors in healthcare settings is limited due to the lack of awareness and understanding of their efficiency. Therefore, this review primarily focuses on the advantages and limitations of all biosensor-based devices over existing methods for the detection of carbapenem resistance in gram negative bacilli. These biosensors represent substantial advancements in combating carbapenem resistance, providing promise for more reliable and accurate diagnostic techniques that may eventually improve patient care and infection control.</p>","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"26 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next-Gen Nano Biosensor Technologies to Monitor Carbapenem Resistance for Personalized Medicine\",\"authors\":\"Rahul Harikumar Lathakumari, Leela Kakithakara Vajravelu, Jayaprakash Thulukanam, Ashwin Kumar Narasimhan\",\"doi\":\"10.1007/s12088-024-01337-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbapenem resistance represents a pressing public health concern, posing significant challenges due to limited treatment options and escalating mortality rates. In India, the prevalence of carbapenem resistance among Enterobacteriaceae ranges between 18 to 31%, causing severe infections such as bloodstream infections, pneumonia, urinary tract infections, and intra-abdominal infections. Accurate and timely diagnosis, particularly for Enterobacteriaceae producing carbapenemase, is crucial for effective clinical prophylaxis of critical care patients as they are considered as a last resort of therapy. Various genotypic and non-genotypic detection methods have been developed over the past decade, their limitations in terms of sensitivity and specificity have led the exploration of innovative technologies. Advanced opportunities for carbapenem resistance detection using microfluidic-based biosensors have miniaturized various biomedical devices. This enables the use of less sample and reagents, cheap pricing, automation, screening, and improved detection. Despite ongoing research and development, the adoption of these biosensors in healthcare settings is limited due to the lack of awareness and understanding of their efficiency. Therefore, this review primarily focuses on the advantages and limitations of all biosensor-based devices over existing methods for the detection of carbapenem resistance in gram negative bacilli. These biosensors represent substantial advancements in combating carbapenem resistance, providing promise for more reliable and accurate diagnostic techniques that may eventually improve patient care and infection control.</p>\",\"PeriodicalId\":13316,\"journal\":{\"name\":\"Indian Journal of Microbiology\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12088-024-01337-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12088-024-01337-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Next-Gen Nano Biosensor Technologies to Monitor Carbapenem Resistance for Personalized Medicine
Carbapenem resistance represents a pressing public health concern, posing significant challenges due to limited treatment options and escalating mortality rates. In India, the prevalence of carbapenem resistance among Enterobacteriaceae ranges between 18 to 31%, causing severe infections such as bloodstream infections, pneumonia, urinary tract infections, and intra-abdominal infections. Accurate and timely diagnosis, particularly for Enterobacteriaceae producing carbapenemase, is crucial for effective clinical prophylaxis of critical care patients as they are considered as a last resort of therapy. Various genotypic and non-genotypic detection methods have been developed over the past decade, their limitations in terms of sensitivity and specificity have led the exploration of innovative technologies. Advanced opportunities for carbapenem resistance detection using microfluidic-based biosensors have miniaturized various biomedical devices. This enables the use of less sample and reagents, cheap pricing, automation, screening, and improved detection. Despite ongoing research and development, the adoption of these biosensors in healthcare settings is limited due to the lack of awareness and understanding of their efficiency. Therefore, this review primarily focuses on the advantages and limitations of all biosensor-based devices over existing methods for the detection of carbapenem resistance in gram negative bacilli. These biosensors represent substantial advancements in combating carbapenem resistance, providing promise for more reliable and accurate diagnostic techniques that may eventually improve patient care and infection control.
期刊介绍:
Indian Journal of Microbiology is the official organ of the Association of Microbiologists of India (AMI). It publishes full-length papers, short communication reviews and mini reviews on all aspects of microbiological research, published quarterly (March, June, September and December). Areas of special interest include agricultural, food, environmental, industrial, medical, pharmaceutical, veterinary and molecular microbiology.