锌-铜-镍混合金属氧化物作为硝基炔和偶氮染料还原降解的异构催化材料

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Letters Pub Date : 2024-06-27 DOI:10.1007/s10562-024-04754-3
Jigyasa Pathak, Poonam Singh
{"title":"锌-铜-镍混合金属氧化物作为硝基炔和偶氮染料还原降解的异构催化材料","authors":"Jigyasa Pathak, Poonam Singh","doi":"10.1007/s10562-024-04754-3","DOIUrl":null,"url":null,"abstract":"<p>Transition metal-based mixed metal oxides (MMOs) are nexus nanomaterials that garner significant interest from scientists because of their unique magnetic, electronic, optical and catalytic properties that can easily be tailored by varying their composition and structure. Although MMOs hold significant potential in multifunctional applications, but they are plagued by certain challenges such as identifying the appropriate method for synthesis, complications in controlling the surface area and the oxidation states of the constituent transition metals, while also ensuring the homogenous distribution of the constituent metal ions. Therefore, the present work aims to study the formation of homogenous and porous zinc-copper-nickel mixed metal oxide (ZnCuNi-MMO) by performing calcination of ZnCuNi-LDH at 350 °C. The obtained ZnCuNi-MMO was characterized using PXRD, SEM–EDX and BET techniques. Thereafter, ZnCuNi-MMO was applied as a heterogeneous catalyst for the hydrogenation of <i>p</i>-nitroaniline (<i>p</i>-NA) and catalytic reduction of methyl orange (MO) dye. The pollutant degradation characteristics were assessed using time-dependent UV–Visible absorption spectroscopy showing advanced efficient behavior of ZnCuNi-MMO towards the hydrogenation of <i>p</i>-NA (96.98%) and reduction of MO (95.58%). The catalyst exhibited fast reaction rates (0.402 min<sup>−1</sup> for hydrogenation of <i>p</i>-NA and 0.471 min<sup>−1</sup> for catalytic reduction of MO) and kinetics analysis of the experimental data was found to be coherent with the pseudo-first order model, thereby implying that the catalysis proceeded through the Langmuir–Hinshelwood mechanism. Thus the obtained experimental results highlight the utility and viability of synthesized MMO as an efficacious and sustainable catalytic material.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc-Copper-Nickel Mixed Metal Oxide as Heterogeneous Catalytic Material for the Reductive Degradation of Nitroarene and Azo Dye\",\"authors\":\"Jigyasa Pathak, Poonam Singh\",\"doi\":\"10.1007/s10562-024-04754-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transition metal-based mixed metal oxides (MMOs) are nexus nanomaterials that garner significant interest from scientists because of their unique magnetic, electronic, optical and catalytic properties that can easily be tailored by varying their composition and structure. Although MMOs hold significant potential in multifunctional applications, but they are plagued by certain challenges such as identifying the appropriate method for synthesis, complications in controlling the surface area and the oxidation states of the constituent transition metals, while also ensuring the homogenous distribution of the constituent metal ions. Therefore, the present work aims to study the formation of homogenous and porous zinc-copper-nickel mixed metal oxide (ZnCuNi-MMO) by performing calcination of ZnCuNi-LDH at 350 °C. The obtained ZnCuNi-MMO was characterized using PXRD, SEM–EDX and BET techniques. Thereafter, ZnCuNi-MMO was applied as a heterogeneous catalyst for the hydrogenation of <i>p</i>-nitroaniline (<i>p</i>-NA) and catalytic reduction of methyl orange (MO) dye. The pollutant degradation characteristics were assessed using time-dependent UV–Visible absorption spectroscopy showing advanced efficient behavior of ZnCuNi-MMO towards the hydrogenation of <i>p</i>-NA (96.98%) and reduction of MO (95.58%). The catalyst exhibited fast reaction rates (0.402 min<sup>−1</sup> for hydrogenation of <i>p</i>-NA and 0.471 min<sup>−1</sup> for catalytic reduction of MO) and kinetics analysis of the experimental data was found to be coherent with the pseudo-first order model, thereby implying that the catalysis proceeded through the Langmuir–Hinshelwood mechanism. Thus the obtained experimental results highlight the utility and viability of synthesized MMO as an efficacious and sustainable catalytic material.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":508,\"journal\":{\"name\":\"Catalysis Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10562-024-04754-3\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10562-024-04754-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于过渡金属的混合金属氧化物(MMOs)是一种新型纳米材料,因其独特的磁性、电子、光学和催化特性而备受科学家关注。虽然 MMOs 在多功能应用方面具有巨大潜力,但它们也面临着一些挑战,如确定合适的合成方法、控制组成过渡金属的表面积和氧化态的复杂性,同时还要确保组成金属离子的均匀分布。因此,本研究旨在通过在 350 °C 下煅烧 ZnCuNi-LDH 来研究均匀多孔锌铜镍混合金属氧化物(ZnCuNi-MMO)的形成。利用 PXRD、SEM-EDX 和 BET 技术对获得的 ZnCuNi-MMO 进行了表征。随后,ZnCuNi-MMO 被用作对硝基苯胺(p-NA)氢化和甲基橙(MO)染料催化还原的异相催化剂。利用随时间变化的紫外-可见吸收光谱对污染物降解特性进行了评估,结果表明 ZnCuNi-MMO 在对-NA 的氢化(96.98%)和 MO 的还原(95.58%)方面具有先进的高效性能。催化剂的反应速率很快(对-NA 的氢化反应为 0.402 min-1,MO 的催化还原反应为 0.471 min-1),实验数据的动力学分析与伪一阶模型一致,这意味着催化作用是通过 Langmuir-Hinshelwood 机理进行的。因此,所获得的实验结果凸显了合成的 MMO 作为一种高效、可持续催化材料的实用性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zinc-Copper-Nickel Mixed Metal Oxide as Heterogeneous Catalytic Material for the Reductive Degradation of Nitroarene and Azo Dye

Transition metal-based mixed metal oxides (MMOs) are nexus nanomaterials that garner significant interest from scientists because of their unique magnetic, electronic, optical and catalytic properties that can easily be tailored by varying their composition and structure. Although MMOs hold significant potential in multifunctional applications, but they are plagued by certain challenges such as identifying the appropriate method for synthesis, complications in controlling the surface area and the oxidation states of the constituent transition metals, while also ensuring the homogenous distribution of the constituent metal ions. Therefore, the present work aims to study the formation of homogenous and porous zinc-copper-nickel mixed metal oxide (ZnCuNi-MMO) by performing calcination of ZnCuNi-LDH at 350 °C. The obtained ZnCuNi-MMO was characterized using PXRD, SEM–EDX and BET techniques. Thereafter, ZnCuNi-MMO was applied as a heterogeneous catalyst for the hydrogenation of p-nitroaniline (p-NA) and catalytic reduction of methyl orange (MO) dye. The pollutant degradation characteristics were assessed using time-dependent UV–Visible absorption spectroscopy showing advanced efficient behavior of ZnCuNi-MMO towards the hydrogenation of p-NA (96.98%) and reduction of MO (95.58%). The catalyst exhibited fast reaction rates (0.402 min−1 for hydrogenation of p-NA and 0.471 min−1 for catalytic reduction of MO) and kinetics analysis of the experimental data was found to be coherent with the pseudo-first order model, thereby implying that the catalysis proceeded through the Langmuir–Hinshelwood mechanism. Thus the obtained experimental results highlight the utility and viability of synthesized MMO as an efficacious and sustainable catalytic material.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
期刊最新文献
WVOx Supported on Industrial Al2O3, SiO2, AC, TiO2–Al2O3 for Catalytic Dehydration of Gas-Glycerol to Acrolein A Modified Two-Step Coprecipitation Method Provides Better CuZnO/Al2O3 Methanol Synthesis Catalyst with More Uniform Distribution of Alumina Preparation of CuO/Activated Carbon Fiber Filter for Adsorption/Catalytic Degradation of Residual Chlorine in Drinking Water Efficient Hydrogen Production by Combined Reforming of Methane over Perovskite-Derived Promoted Ni Catalysts Fabrication Condition-Dependent Photocatalytic Ciprofloxacin (CIP) Antibiotic Degradation of NaTiOx-Derived Brookite TiO2 Nanorods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1