用于费托合成的不同介质结构二氧化硅支撑纳米铁催化剂的比较研究

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Letters Pub Date : 2024-06-21 DOI:10.1007/s10562-024-04764-1
Yaqian Liu, Feng Wu, Zhixiong You, Jinjun Li
{"title":"用于费托合成的不同介质结构二氧化硅支撑纳米铁催化剂的比较研究","authors":"Yaqian Liu,&nbsp;Feng Wu,&nbsp;Zhixiong You,&nbsp;Jinjun Li","doi":"10.1007/s10562-024-04764-1","DOIUrl":null,"url":null,"abstract":"<p>Fischer-Tropsch synthesis (FTS) converts syngas into multi-carbon products, whose distribution is highly dependent on the catalyst structure. Here, nano-iron catalysts with different silica supports were prepared, and their activities and durability for Fischer-Tropsch to olefins (FTO) process were investigated. Fe/KCC-1 demonstrated the best FTO catalytic selectivity of 25.0% for C<sub>2–4</sub><sup>=</sup> and an olefin-to-paraffin ratio of 1.68. Its open pore structure allowed primary olefins to escape quickly from the catalyst surface, lowering the probability for secondary reactions. However, its durability was lower than Fe/SBA-15 due to coke formation, pore structure collapse and Fe particle agglomeration. The thermal stability of SBA-15 resulted in its better durability, and the encapsulated Fe particles inside the cylindrical mesopores also allowed better resistance to sintering. However, the less open structure of Fe/SBA-15 led to longer residence time for the primary olefins and increased possibility for secondary reactions, causing undesired chain growth.</p>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of Different Mesostructured Silica-supported Nano-iron Catalysts for Fischer–Tropsch Synthesis\",\"authors\":\"Yaqian Liu,&nbsp;Feng Wu,&nbsp;Zhixiong You,&nbsp;Jinjun Li\",\"doi\":\"10.1007/s10562-024-04764-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fischer-Tropsch synthesis (FTS) converts syngas into multi-carbon products, whose distribution is highly dependent on the catalyst structure. Here, nano-iron catalysts with different silica supports were prepared, and their activities and durability for Fischer-Tropsch to olefins (FTO) process were investigated. Fe/KCC-1 demonstrated the best FTO catalytic selectivity of 25.0% for C<sub>2–4</sub><sup>=</sup> and an olefin-to-paraffin ratio of 1.68. Its open pore structure allowed primary olefins to escape quickly from the catalyst surface, lowering the probability for secondary reactions. However, its durability was lower than Fe/SBA-15 due to coke formation, pore structure collapse and Fe particle agglomeration. The thermal stability of SBA-15 resulted in its better durability, and the encapsulated Fe particles inside the cylindrical mesopores also allowed better resistance to sintering. However, the less open structure of Fe/SBA-15 led to longer residence time for the primary olefins and increased possibility for secondary reactions, causing undesired chain growth.</p>\",\"PeriodicalId\":508,\"journal\":{\"name\":\"Catalysis Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10562-024-04764-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04764-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要费托合成(FTS)将合成气转化为多碳产品,其分布与催化剂结构密切相关。本文制备了具有不同二氧化硅载体的纳米铁催化剂,并研究了它们在费托合成烯烃(FTO)过程中的活性和耐久性。Fe/KCC-1 对 C2-4= 的 FTO 催化选择性最好,为 25.0%,烯烃与石蜡的比率为 1.68。其开放式孔隙结构允许初级烯烃迅速从催化剂表面逸出,从而降低了发生二次反应的几率。然而,由于焦炭形成、孔隙结构坍塌和铁颗粒团聚,其耐久性低于 Fe/SBA-15。SBA-15 的热稳定性使其具有更好的耐久性,圆柱形中孔内包裹的铁颗粒也使其具有更好的抗烧结性。然而,Fe/SBA-15 的开放结构较少,导致初级烯烃的停留时间延长,增加了发生二次反应的可能性,从而引起了不希望的链增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Study of Different Mesostructured Silica-supported Nano-iron Catalysts for Fischer–Tropsch Synthesis

Fischer-Tropsch synthesis (FTS) converts syngas into multi-carbon products, whose distribution is highly dependent on the catalyst structure. Here, nano-iron catalysts with different silica supports were prepared, and their activities and durability for Fischer-Tropsch to olefins (FTO) process were investigated. Fe/KCC-1 demonstrated the best FTO catalytic selectivity of 25.0% for C2–4= and an olefin-to-paraffin ratio of 1.68. Its open pore structure allowed primary olefins to escape quickly from the catalyst surface, lowering the probability for secondary reactions. However, its durability was lower than Fe/SBA-15 due to coke formation, pore structure collapse and Fe particle agglomeration. The thermal stability of SBA-15 resulted in its better durability, and the encapsulated Fe particles inside the cylindrical mesopores also allowed better resistance to sintering. However, the less open structure of Fe/SBA-15 led to longer residence time for the primary olefins and increased possibility for secondary reactions, causing undesired chain growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
期刊最新文献
Plasma-Synthesized Combined Nitrogen and Cationic Species Doped-MnO2: Impact on Texture, Optical Properties, and Photocatalytic Activity Microscopic Investigation of CO Oxidation Reaction by Copper–Manganese Oxide Catalysts Sonochemical Synthesis of Ti1−x−yFexPbyO2 (with x and y = 0, 0.01, 0.03, 0.07): Structural Analysis, Influence of Radiation Type on Photocatalytic Activity and Assessment of Antimicrobial Properties Study on Effect of Calcination and Ag Loading on Ag/TiO2 Catalyst for Low-Temperature Selective Catalytic Oxidation of Ammonia Novel of Poly(triazine imide) Composite for Selective Photooxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1