{"title":"地震和火山爆发诱发的大气声共振对电离层和地磁场的影响","authors":"V. V. Surkov, V. A. Pilipenko","doi":"10.1134/S1069351324700241","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—It has been observed that strong earthquakes and volcanic eruptions are sometimes followed by geomagnetic oscillations with frequencies of 3.5–4.0 mHz. This paper describes the theoretical study of the probable cause of these phenomena, which is related to the vertical acoustic resonance between the Earth’s surface and the thermosphere, produced by the propagation of the atmospheric wave corresponding to the acoustic branch generated by surface displacements. The propagation of two-dimensional (2D) harmonic acoustic wave is analyzed in a plane layered model of the atmosphere and ionosphere with oblique geomagnetic field. The altitude of the reflecting atmospheric layer corresponds to the region of a sharp temperature change in the vicinity of the thermosphere boundary ~80–90 km. The calculated fundamental resonant frequency is close to the observed oscillations. The obtained solution is used to calculate currents and electromagnetic perturbations in the atmosphere and ionosphere. Assuming thin-layer approximation for the ionospheric <i>E</i>-layer, we derive formulas describing the geomagnetic disturbances (GMD) in the ionosphere and on the Earth’s surface. The GMD spectrum has a sharp peak at the frequency corresponding to the acoustic resonance. According to the calculations, close to the resonance frequency, the power spectral density of GMD on the ground can reach 5–30 nT<sup>2</sup>/Hz, which is consistent with the results of ground-based measurements.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"60 1","pages":"49 - 58"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Atmospheric Acoustic Resonance Induced by Earthquakes and Volcanic Eruptions on the Ionosphere and Geomagnetic Field\",\"authors\":\"V. V. Surkov, V. A. Pilipenko\",\"doi\":\"10.1134/S1069351324700241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—It has been observed that strong earthquakes and volcanic eruptions are sometimes followed by geomagnetic oscillations with frequencies of 3.5–4.0 mHz. This paper describes the theoretical study of the probable cause of these phenomena, which is related to the vertical acoustic resonance between the Earth’s surface and the thermosphere, produced by the propagation of the atmospheric wave corresponding to the acoustic branch generated by surface displacements. The propagation of two-dimensional (2D) harmonic acoustic wave is analyzed in a plane layered model of the atmosphere and ionosphere with oblique geomagnetic field. The altitude of the reflecting atmospheric layer corresponds to the region of a sharp temperature change in the vicinity of the thermosphere boundary ~80–90 km. The calculated fundamental resonant frequency is close to the observed oscillations. The obtained solution is used to calculate currents and electromagnetic perturbations in the atmosphere and ionosphere. Assuming thin-layer approximation for the ionospheric <i>E</i>-layer, we derive formulas describing the geomagnetic disturbances (GMD) in the ionosphere and on the Earth’s surface. The GMD spectrum has a sharp peak at the frequency corresponding to the acoustic resonance. According to the calculations, close to the resonance frequency, the power spectral density of GMD on the ground can reach 5–30 nT<sup>2</sup>/Hz, which is consistent with the results of ground-based measurements.</p>\",\"PeriodicalId\":602,\"journal\":{\"name\":\"Izvestiya, Physics of the Solid Earth\",\"volume\":\"60 1\",\"pages\":\"49 - 58\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya, Physics of the Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1069351324700241\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S1069351324700241","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要--据观测,强烈地震和火山爆发后有时会出现频率为 3.5-4.0 mHz 的地磁振荡。本文描述了对这些现象可能原因的理论研究,这与地球表面和热层之间的垂直声共振有关,声共振是由地表位移产生的声分支对应的大气波传播产生的。在具有斜地磁场的大气层和电离层平面分层模型中分析了二维(2D)谐波声波的传播。反射大气层的高度与热层边界附近 ~80-90 千米温度急剧变化的区域相对应。计算得出的基谐振频率与观测到的振荡频率接近。所得到的解用于计算大气层和电离层中的电流和电磁扰动。假设电离层 E 层为薄层近似,我们推导出描述电离层和地球表面地磁扰动(GMD)的公式。地磁扰动频谱在与声共振相应的频率处有一个尖锐的峰值。根据计算结果,接近共振频率时,地面上的地磁扰动功率谱密度可达 5-30 nT2/Hz,这与地面测量结果一致。
The Effect of Atmospheric Acoustic Resonance Induced by Earthquakes and Volcanic Eruptions on the Ionosphere and Geomagnetic Field
Abstract—It has been observed that strong earthquakes and volcanic eruptions are sometimes followed by geomagnetic oscillations with frequencies of 3.5–4.0 mHz. This paper describes the theoretical study of the probable cause of these phenomena, which is related to the vertical acoustic resonance between the Earth’s surface and the thermosphere, produced by the propagation of the atmospheric wave corresponding to the acoustic branch generated by surface displacements. The propagation of two-dimensional (2D) harmonic acoustic wave is analyzed in a plane layered model of the atmosphere and ionosphere with oblique geomagnetic field. The altitude of the reflecting atmospheric layer corresponds to the region of a sharp temperature change in the vicinity of the thermosphere boundary ~80–90 km. The calculated fundamental resonant frequency is close to the observed oscillations. The obtained solution is used to calculate currents and electromagnetic perturbations in the atmosphere and ionosphere. Assuming thin-layer approximation for the ionospheric E-layer, we derive formulas describing the geomagnetic disturbances (GMD) in the ionosphere and on the Earth’s surface. The GMD spectrum has a sharp peak at the frequency corresponding to the acoustic resonance. According to the calculations, close to the resonance frequency, the power spectral density of GMD on the ground can reach 5–30 nT2/Hz, which is consistent with the results of ground-based measurements.
期刊介绍:
Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.