{"title":"利用迭代算法和学习投影器重建非均质介质","authors":"Kai Li, Bo Zhang, Haiwen Zhang","doi":"10.1088/1361-6420/ad4f0b","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the inverse problem of reconstructing an inhomogeneous medium from the acoustic far-field data at a fixed frequency in two dimensions. This inverse problem is severely ill-posed (and also strongly nonlinear), and certain regularization strategy is thus needed. However, it is difficult to select an appropriate regularization strategy which should enforce some <italic toggle=\"yes\">a priori</italic> information of the unknown scatterer. To address this issue, we plan to use a deep learning approach to learn some <italic toggle=\"yes\">a priori</italic> information of the unknown scatterer from certain ground truth data, which is then combined with a traditional iteration method to solve the inverse problem. Specifically, we propose a deep learning-based iterative reconstruction algorithm for the inverse problem, based on a repeated application of a deep neural network and the iteratively regularized Gauss–Newton method (IRGNM). Our deep neural network (called the learned projector in this paper) mainly focuses on learning the <italic toggle=\"yes\">a priori</italic> information of the <italic toggle=\"yes\">shape</italic> of the unknown contrast with a normalization technique in the training processes and is trained to act like a projector which is helpful for projecting the solution into some feasible region. Extensive numerical experiments show that our reconstruction algorithm provides good reconstruction results even for the high contrast case and has a satisfactory generalization ability.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"63 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of inhomogeneous media by an iteration algorithm with a learned projector\",\"authors\":\"Kai Li, Bo Zhang, Haiwen Zhang\",\"doi\":\"10.1088/1361-6420/ad4f0b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the inverse problem of reconstructing an inhomogeneous medium from the acoustic far-field data at a fixed frequency in two dimensions. This inverse problem is severely ill-posed (and also strongly nonlinear), and certain regularization strategy is thus needed. However, it is difficult to select an appropriate regularization strategy which should enforce some <italic toggle=\\\"yes\\\">a priori</italic> information of the unknown scatterer. To address this issue, we plan to use a deep learning approach to learn some <italic toggle=\\\"yes\\\">a priori</italic> information of the unknown scatterer from certain ground truth data, which is then combined with a traditional iteration method to solve the inverse problem. Specifically, we propose a deep learning-based iterative reconstruction algorithm for the inverse problem, based on a repeated application of a deep neural network and the iteratively regularized Gauss–Newton method (IRGNM). Our deep neural network (called the learned projector in this paper) mainly focuses on learning the <italic toggle=\\\"yes\\\">a priori</italic> information of the <italic toggle=\\\"yes\\\">shape</italic> of the unknown contrast with a normalization technique in the training processes and is trained to act like a projector which is helpful for projecting the solution into some feasible region. Extensive numerical experiments show that our reconstruction algorithm provides good reconstruction results even for the high contrast case and has a satisfactory generalization ability.\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad4f0b\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad4f0b","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Reconstruction of inhomogeneous media by an iteration algorithm with a learned projector
This paper is concerned with the inverse problem of reconstructing an inhomogeneous medium from the acoustic far-field data at a fixed frequency in two dimensions. This inverse problem is severely ill-posed (and also strongly nonlinear), and certain regularization strategy is thus needed. However, it is difficult to select an appropriate regularization strategy which should enforce some a priori information of the unknown scatterer. To address this issue, we plan to use a deep learning approach to learn some a priori information of the unknown scatterer from certain ground truth data, which is then combined with a traditional iteration method to solve the inverse problem. Specifically, we propose a deep learning-based iterative reconstruction algorithm for the inverse problem, based on a repeated application of a deep neural network and the iteratively regularized Gauss–Newton method (IRGNM). Our deep neural network (called the learned projector in this paper) mainly focuses on learning the a priori information of the shape of the unknown contrast with a normalization technique in the training processes and is trained to act like a projector which is helpful for projecting the solution into some feasible region. Extensive numerical experiments show that our reconstruction algorithm provides good reconstruction results even for the high contrast case and has a satisfactory generalization ability.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.