{"title":"18Mg 的结构和 2p 衰变机理","authors":"Long Zhou, De-Qing Fang, Si-Min Wang, Hui Hua","doi":"10.1007/s41365-024-01479-1","DOIUrl":null,"url":null,"abstract":"<p>The recently discovered, extremely proton-rich nuclide <span>\\(^{18}\\)</span>Mg exhibits ground-state decay via two sequential two-proton (2p) emissions through the intermediate nucleus, <span>\\(^{16}\\)</span>Ne. This study investigates the structure and the initial 2p decay mechanism of <span>\\(^{18}\\textrm{Mg}\\)</span> by examining the density and correlations of the valence protons using a three-body Gamow coupled-channel method. The results show that the ground state of <span>\\(^{18}\\textrm{Mg}\\)</span> is significantly influenced by the continuum, resulting in a significant <i>s</i>-wave component. However, based on the current framework, this does not lead to a significant deviation in mirror symmetry in either the structure or spectroscopy of the <span>\\(^{18}\\textrm{Mg}\\)</span>–<span>\\(^{18}\\textrm{C}\\)</span> pair. Additionally, the time evolution analysis of the <span>\\(^{18}\\textrm{Mg}\\)</span> ground state suggests a simultaneous 2p emission during the first step of decay. The observed nucleon–nucleon correlations align with those of the light-mass 2p emitters, indicating a consistent decay behavior within this nuclear region.</p>","PeriodicalId":19177,"journal":{"name":"Nuclear Science and Techniques","volume":"73 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and 2p decay mechanism of 18Mg\",\"authors\":\"Long Zhou, De-Qing Fang, Si-Min Wang, Hui Hua\",\"doi\":\"10.1007/s41365-024-01479-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The recently discovered, extremely proton-rich nuclide <span>\\\\(^{18}\\\\)</span>Mg exhibits ground-state decay via two sequential two-proton (2p) emissions through the intermediate nucleus, <span>\\\\(^{16}\\\\)</span>Ne. This study investigates the structure and the initial 2p decay mechanism of <span>\\\\(^{18}\\\\textrm{Mg}\\\\)</span> by examining the density and correlations of the valence protons using a three-body Gamow coupled-channel method. The results show that the ground state of <span>\\\\(^{18}\\\\textrm{Mg}\\\\)</span> is significantly influenced by the continuum, resulting in a significant <i>s</i>-wave component. However, based on the current framework, this does not lead to a significant deviation in mirror symmetry in either the structure or spectroscopy of the <span>\\\\(^{18}\\\\textrm{Mg}\\\\)</span>–<span>\\\\(^{18}\\\\textrm{C}\\\\)</span> pair. Additionally, the time evolution analysis of the <span>\\\\(^{18}\\\\textrm{Mg}\\\\)</span> ground state suggests a simultaneous 2p emission during the first step of decay. The observed nucleon–nucleon correlations align with those of the light-mass 2p emitters, indicating a consistent decay behavior within this nuclear region.</p>\",\"PeriodicalId\":19177,\"journal\":{\"name\":\"Nuclear Science and Techniques\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Science and Techniques\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s41365-024-01479-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Science and Techniques","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s41365-024-01479-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
最近发现的极富质子的核素((^{18}\)Mg)通过中间核(\(^{16}\)Ne)的两个连续的双质子(2p)发射,表现出基态衰变。本研究通过使用三体伽莫耦合通道方法考察价质子的密度和相关性,研究了\(^{18}\textrm{Mg}\)的结构和初始 2p 衰变机制。结果表明,(^{18}textrm{Mg}/) 的基态受到连续体的显著影响,从而产生了一个重要的 s 波分量。然而,基于当前的框架,这并不会导致\(^{18}textrm{Mg}\)-\(^{18}textrm{C}\)对的结构或光谱出现明显的镜像对称性偏差。此外,对(^{18}textrm{Mg}/)基态的时间演化分析表明,在衰变的第一步,同时存在 2p 发射。观测到的核子-核子相关性与轻质量 2p 发射器的相关性一致,表明在这一核区域内存在一致的衰变行为。
The recently discovered, extremely proton-rich nuclide \(^{18}\)Mg exhibits ground-state decay via two sequential two-proton (2p) emissions through the intermediate nucleus, \(^{16}\)Ne. This study investigates the structure and the initial 2p decay mechanism of \(^{18}\textrm{Mg}\) by examining the density and correlations of the valence protons using a three-body Gamow coupled-channel method. The results show that the ground state of \(^{18}\textrm{Mg}\) is significantly influenced by the continuum, resulting in a significant s-wave component. However, based on the current framework, this does not lead to a significant deviation in mirror symmetry in either the structure or spectroscopy of the \(^{18}\textrm{Mg}\)–\(^{18}\textrm{C}\) pair. Additionally, the time evolution analysis of the \(^{18}\textrm{Mg}\) ground state suggests a simultaneous 2p emission during the first step of decay. The observed nucleon–nucleon correlations align with those of the light-mass 2p emitters, indicating a consistent decay behavior within this nuclear region.
期刊介绍:
Nuclear Science and Techniques (NST) reports scientific findings, technical advances and important results in the fields of nuclear science and techniques. The aim of this periodical is to stimulate cross-fertilization of knowledge among scientists and engineers working in the fields of nuclear research.
Scope covers the following subjects:
• Synchrotron radiation applications, beamline technology;
• Accelerator, ray technology and applications;
• Nuclear chemistry, radiochemistry, radiopharmaceuticals, nuclear medicine;
• Nuclear electronics and instrumentation;
• Nuclear physics and interdisciplinary research;
• Nuclear energy science and engineering.