{"title":"系统回顾过去十年中机器学习建模过程及在 ROP 预测中的应用","authors":"","doi":"10.1016/j.petsci.2024.05.013","DOIUrl":null,"url":null,"abstract":"<div><div>Fossil fuels are undoubtedly important, and drilling technology plays an important role in realizing fossil fuel exploration; therefore, the prediction and evaluation of drilling efficiency is a key research goal in the industry. Limited by the unknown geological environment and complex operating procedures, the prediction and evaluation of drilling efficiency were very difficult before the introduction of machine learning algorithms. This review statistically analyses rate of penetration (ROP) prediction models established based on machine learning algorithms; establishes an overall framework including data collection, data preprocessing, model establishment, and accuracy evaluation; and compares the effectiveness of different algorithms in each link of the process. This review also compares the prediction accuracy of different machine learning models and traditional models commonly used in this field and demonstrates that machine learning models are the most effective technical means in current ROP prediction modeling.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic review of machine learning modeling processes and applications in ROP prediction in the past decade\",\"authors\":\"\",\"doi\":\"10.1016/j.petsci.2024.05.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fossil fuels are undoubtedly important, and drilling technology plays an important role in realizing fossil fuel exploration; therefore, the prediction and evaluation of drilling efficiency is a key research goal in the industry. Limited by the unknown geological environment and complex operating procedures, the prediction and evaluation of drilling efficiency were very difficult before the introduction of machine learning algorithms. This review statistically analyses rate of penetration (ROP) prediction models established based on machine learning algorithms; establishes an overall framework including data collection, data preprocessing, model establishment, and accuracy evaluation; and compares the effectiveness of different algorithms in each link of the process. This review also compares the prediction accuracy of different machine learning models and traditional models commonly used in this field and demonstrates that machine learning models are the most effective technical means in current ROP prediction modeling.</div></div>\",\"PeriodicalId\":19938,\"journal\":{\"name\":\"Petroleum Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1995822624001304\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624001304","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A systematic review of machine learning modeling processes and applications in ROP prediction in the past decade
Fossil fuels are undoubtedly important, and drilling technology plays an important role in realizing fossil fuel exploration; therefore, the prediction and evaluation of drilling efficiency is a key research goal in the industry. Limited by the unknown geological environment and complex operating procedures, the prediction and evaluation of drilling efficiency were very difficult before the introduction of machine learning algorithms. This review statistically analyses rate of penetration (ROP) prediction models established based on machine learning algorithms; establishes an overall framework including data collection, data preprocessing, model establishment, and accuracy evaluation; and compares the effectiveness of different algorithms in each link of the process. This review also compares the prediction accuracy of different machine learning models and traditional models commonly used in this field and demonstrates that machine learning models are the most effective technical means in current ROP prediction modeling.
期刊介绍:
Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.