硼微合金化对铸造生物医学 Co-Cr-W-Ni 基合金微观结构、机械性能和腐蚀性能的影响

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Research Pub Date : 2024-07-02 DOI:10.1557/s43578-024-01384-8
Muhammad Ilham Maulana, Adi Noer Syahid, Bunga Rani Elvira, Aprilia Erryani, Yudi Nugraha Thaha, Fendy Rokhmanto, Manami Mori, Kenta Yamanaka, Akhmad Ardian Korda, Ika Kartika, Albertus Deny Heri Setyawan
{"title":"硼微合金化对铸造生物医学 Co-Cr-W-Ni 基合金微观结构、机械性能和腐蚀性能的影响","authors":"Muhammad Ilham Maulana, Adi Noer Syahid, Bunga Rani Elvira, Aprilia Erryani, Yudi Nugraha Thaha, Fendy Rokhmanto, Manami Mori, Kenta Yamanaka, Akhmad Ardian Korda, Ika Kartika, Albertus Deny Heri Setyawan","doi":"10.1557/s43578-024-01384-8","DOIUrl":null,"url":null,"abstract":"<p>Co–Cr–W–Ni–Mn–B alloys, potentially applicable for implant materials, with boron contents of 0, 0.01, and 0.05 wt% were prepared by arc melting in an argon atmosphere. The influence of B content on the as-cast microstructure, mechanical, and corrosion properties was investigated. The as-cast state revealed dendritic structure, with the length of dendritic arm-spacing decreasing with increasing boron contents. The addition of boron led to the emergence of M<sub>5</sub>B<sub>3</sub>-type precipitates at the interdendritic boundaries within the matrix, which consisted of the γ and ε phases. The alloy with 0.01 wt% B exhibited increased ultimate-tensile-strength and plastic elongation of 17% and 36% higher than those of the boron-free alloy, respectively. The corrosion rate of the Co–Cr–W–Ni–Mn alloy in Hanks’ solution has dropped drastically by 850% with a minor B addition of 0.05 wt%. The improved mechanical and corrosion properties were attributed to the refined dendritic structure and formation of boride (M<sub>5</sub>B<sub>3</sub>-type) precipitates.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"94 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of boron microalloying on the microstructure, mechanical, and corrosion properties of as-cast biomedical Co–Cr–W–Ni-based alloys\",\"authors\":\"Muhammad Ilham Maulana, Adi Noer Syahid, Bunga Rani Elvira, Aprilia Erryani, Yudi Nugraha Thaha, Fendy Rokhmanto, Manami Mori, Kenta Yamanaka, Akhmad Ardian Korda, Ika Kartika, Albertus Deny Heri Setyawan\",\"doi\":\"10.1557/s43578-024-01384-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Co–Cr–W–Ni–Mn–B alloys, potentially applicable for implant materials, with boron contents of 0, 0.01, and 0.05 wt% were prepared by arc melting in an argon atmosphere. The influence of B content on the as-cast microstructure, mechanical, and corrosion properties was investigated. The as-cast state revealed dendritic structure, with the length of dendritic arm-spacing decreasing with increasing boron contents. The addition of boron led to the emergence of M<sub>5</sub>B<sub>3</sub>-type precipitates at the interdendritic boundaries within the matrix, which consisted of the γ and ε phases. The alloy with 0.01 wt% B exhibited increased ultimate-tensile-strength and plastic elongation of 17% and 36% higher than those of the boron-free alloy, respectively. The corrosion rate of the Co–Cr–W–Ni–Mn alloy in Hanks’ solution has dropped drastically by 850% with a minor B addition of 0.05 wt%. The improved mechanical and corrosion properties were attributed to the refined dendritic structure and formation of boride (M<sub>5</sub>B<sub>3</sub>-type) precipitates.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":16306,\"journal\":{\"name\":\"Journal of Materials Research\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-024-01384-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01384-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在氩气环境中通过电弧熔化制备了硼含量分别为 0、0.01 和 0.05 wt% 的 Co-Cr-W-Ni-Mn-B 合金,该合金可用于植入材料。研究了硼含量对铸态微观结构、机械性能和腐蚀性能的影响。铸造状态显示出树枝状结构,树枝状臂间距的长度随着硼含量的增加而减小。硼的加入导致基体内枝晶间边界出现 M5B3 型析出物,这些析出物由 γ 和 ε 相组成。硼含量为 0.01 wt% 的合金的极限拉伸强度和塑性伸长率分别比无硼合金高出 17% 和 36%。钴-铬-镍-锰合金在汉克斯溶液中的腐蚀率在少量添加 0.05 wt% 的硼后急剧下降了 850%。机械性能和腐蚀性能的改善归功于细化的树枝状结构和硼化物(M5B3 型)析出物的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of boron microalloying on the microstructure, mechanical, and corrosion properties of as-cast biomedical Co–Cr–W–Ni-based alloys

Co–Cr–W–Ni–Mn–B alloys, potentially applicable for implant materials, with boron contents of 0, 0.01, and 0.05 wt% were prepared by arc melting in an argon atmosphere. The influence of B content on the as-cast microstructure, mechanical, and corrosion properties was investigated. The as-cast state revealed dendritic structure, with the length of dendritic arm-spacing decreasing with increasing boron contents. The addition of boron led to the emergence of M5B3-type precipitates at the interdendritic boundaries within the matrix, which consisted of the γ and ε phases. The alloy with 0.01 wt% B exhibited increased ultimate-tensile-strength and plastic elongation of 17% and 36% higher than those of the boron-free alloy, respectively. The corrosion rate of the Co–Cr–W–Ni–Mn alloy in Hanks’ solution has dropped drastically by 850% with a minor B addition of 0.05 wt%. The improved mechanical and corrosion properties were attributed to the refined dendritic structure and formation of boride (M5B3-type) precipitates.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research
Journal of Materials Research 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.70%
发文量
362
审稿时长
2.8 months
期刊介绍: Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome. • Novel materials discovery • Electronic, photonic and magnetic materials • Energy Conversion and storage materials • New thermal and structural materials • Soft materials • Biomaterials and related topics • Nanoscale science and technology • Advances in materials characterization methods and techniques • Computational materials science, modeling and theory
期刊最新文献
Effect of Co concentration on cation distribution and magnetic and magneto-optical properties of CoxZn1-xFe2O4 nanoparticles synthesized with citrate precursor method Fabrication and characterization of nanocomposite hydrogel based N-succinyl chitosan/oxidized tragacanth gum/silver nanoparticles for biomedical materials Development of a processing route for the fabrication of thin hierarchically porous copper self-standing structure using direct ink writing and sintering for electrochemical energy storage application Rapidly synthesis of AuM (M = Pt, Pd) hexagonals/graphene quantum dots nanostructures and their application for non-enzyme hydrogen peroxide detection Nanocomposites Fe2O3/PNR loaded partially reduced rGO/GCE as an electrochemical probe for selective determination of uric acid and dopamine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1