{"title":"通过球磨、溶胶-凝胶和组合(混合)工艺开发骨科用多孔结构赤铁矿(Ca2MgSi2O7)的比较研究","authors":"M. Girija, T. Sampath Kumar","doi":"10.1557/s43578-024-01378-6","DOIUrl":null,"url":null,"abstract":"<p>Biomedical material advancements have resulted in an increasing demand for innovative and high-performance Akermanite (AKT-Ca<sub>2</sub>MgSi<sub>2</sub>O<sub>7</sub>) ceramics developed for a diverse range of uses. This study conducts a comparative analysis and development of porous AKT structures, employing three distinct synthesis methods: ball milling, sol–gel, and a combining both processes. The objective is to evaluate the microstructural properties, porosity levels, mechanical strength, and bioactivity of the AKT. XRD study confirms the phase purity at 1300 °C, and FT-IR identified the respective functional groups present in the material composition. SEM analysis revealed the porous structure (~ 3–6 μm) of AKT samples, which had a uniform distribution. The results suggest that the combination process enhances the structural and functional properties of Akermanite. Biomineralization study reveals that hydroxyapatite formation was attained after 21 days. The achieved compressive strength is 193 ± 5 MPa. The outcome of the antibacterial activity against <i>S. aureus</i> and <i>E. coli</i> test strains suggests that viable material for orthopedic applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"28 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative investigation on the development of porous-structured Akermanite (Ca2MgSi2O7) via ball milling, sol–gel, and combination (hybrid) process for orthopedic applications\",\"authors\":\"M. Girija, T. Sampath Kumar\",\"doi\":\"10.1557/s43578-024-01378-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biomedical material advancements have resulted in an increasing demand for innovative and high-performance Akermanite (AKT-Ca<sub>2</sub>MgSi<sub>2</sub>O<sub>7</sub>) ceramics developed for a diverse range of uses. This study conducts a comparative analysis and development of porous AKT structures, employing three distinct synthesis methods: ball milling, sol–gel, and a combining both processes. The objective is to evaluate the microstructural properties, porosity levels, mechanical strength, and bioactivity of the AKT. XRD study confirms the phase purity at 1300 °C, and FT-IR identified the respective functional groups present in the material composition. SEM analysis revealed the porous structure (~ 3–6 μm) of AKT samples, which had a uniform distribution. The results suggest that the combination process enhances the structural and functional properties of Akermanite. Biomineralization study reveals that hydroxyapatite formation was attained after 21 days. The achieved compressive strength is 193 ± 5 MPa. The outcome of the antibacterial activity against <i>S. aureus</i> and <i>E. coli</i> test strains suggests that viable material for orthopedic applications.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":16306,\"journal\":{\"name\":\"Journal of Materials Research\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-024-01378-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01378-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A comparative investigation on the development of porous-structured Akermanite (Ca2MgSi2O7) via ball milling, sol–gel, and combination (hybrid) process for orthopedic applications
Biomedical material advancements have resulted in an increasing demand for innovative and high-performance Akermanite (AKT-Ca2MgSi2O7) ceramics developed for a diverse range of uses. This study conducts a comparative analysis and development of porous AKT structures, employing three distinct synthesis methods: ball milling, sol–gel, and a combining both processes. The objective is to evaluate the microstructural properties, porosity levels, mechanical strength, and bioactivity of the AKT. XRD study confirms the phase purity at 1300 °C, and FT-IR identified the respective functional groups present in the material composition. SEM analysis revealed the porous structure (~ 3–6 μm) of AKT samples, which had a uniform distribution. The results suggest that the combination process enhances the structural and functional properties of Akermanite. Biomineralization study reveals that hydroxyapatite formation was attained after 21 days. The achieved compressive strength is 193 ± 5 MPa. The outcome of the antibacterial activity against S. aureus and E. coli test strains suggests that viable material for orthopedic applications.
期刊介绍:
Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome.
• Novel materials discovery
• Electronic, photonic and magnetic materials
• Energy Conversion and storage materials
• New thermal and structural materials
• Soft materials
• Biomaterials and related topics
• Nanoscale science and technology
• Advances in materials characterization methods and techniques
• Computational materials science, modeling and theory