Xianyu George Pan, Ashton M. Corpuz, Manoj R. Rajanna, Emily L. Johnson
{"title":"用于经导管主动脉瓣生成式设计的参数化、算法建模和流体-结构相互作用分析","authors":"Xianyu George Pan, Ashton M. Corpuz, Manoj R. Rajanna, Emily L. Johnson","doi":"10.1007/s00366-024-01973-5","DOIUrl":null,"url":null,"abstract":"<p>Heart valves play a critical role in maintaining proper cardiovascular function in the human heart; however, valve diseases can lead to improper valvular function and reduced cardiovascular performance. Depending on the extent and severity of the valvular disease, replacement operations are often required to ensure that the heart continues to operate properly in the cardiac system. Transcatheter aortic valve replacement (TAVR) procedures have recently emerged as a promising alternative to surgical replacement approaches because the percutaneous methods used in these implant operations are significantly less invasive than open heart surgery. Despite the advantages of transcatheter devices, the precise deployment, proper valve sizing, and stable anchoring required to securely place these valves in the aorta remain challenging even in successful TAVR procedures. This work proposes a parametric modeling approach for transcatheter heart valves (THVs) that enables flexible valvular development and sizing to effectively generate existing and novel valve designs. This study showcases two THV configurations that are analyzed using an immersogeometric fluid–structure interaction (IMGA FSI) framework to demonstrate the influence of geometric changes on THV performance. The proposed modeling framework illustrates the impact of these features on THV behavior and indicates the effectiveness of parametric modeling approaches for enhancing THV performance and efficacy in the future.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"61 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameterization, algorithmic modeling, and fluid–structure interaction analysis for generative design of transcatheter aortic valves\",\"authors\":\"Xianyu George Pan, Ashton M. Corpuz, Manoj R. Rajanna, Emily L. Johnson\",\"doi\":\"10.1007/s00366-024-01973-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heart valves play a critical role in maintaining proper cardiovascular function in the human heart; however, valve diseases can lead to improper valvular function and reduced cardiovascular performance. Depending on the extent and severity of the valvular disease, replacement operations are often required to ensure that the heart continues to operate properly in the cardiac system. Transcatheter aortic valve replacement (TAVR) procedures have recently emerged as a promising alternative to surgical replacement approaches because the percutaneous methods used in these implant operations are significantly less invasive than open heart surgery. Despite the advantages of transcatheter devices, the precise deployment, proper valve sizing, and stable anchoring required to securely place these valves in the aorta remain challenging even in successful TAVR procedures. This work proposes a parametric modeling approach for transcatheter heart valves (THVs) that enables flexible valvular development and sizing to effectively generate existing and novel valve designs. This study showcases two THV configurations that are analyzed using an immersogeometric fluid–structure interaction (IMGA FSI) framework to demonstrate the influence of geometric changes on THV performance. The proposed modeling framework illustrates the impact of these features on THV behavior and indicates the effectiveness of parametric modeling approaches for enhancing THV performance and efficacy in the future.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-01973-5\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-01973-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Parameterization, algorithmic modeling, and fluid–structure interaction analysis for generative design of transcatheter aortic valves
Heart valves play a critical role in maintaining proper cardiovascular function in the human heart; however, valve diseases can lead to improper valvular function and reduced cardiovascular performance. Depending on the extent and severity of the valvular disease, replacement operations are often required to ensure that the heart continues to operate properly in the cardiac system. Transcatheter aortic valve replacement (TAVR) procedures have recently emerged as a promising alternative to surgical replacement approaches because the percutaneous methods used in these implant operations are significantly less invasive than open heart surgery. Despite the advantages of transcatheter devices, the precise deployment, proper valve sizing, and stable anchoring required to securely place these valves in the aorta remain challenging even in successful TAVR procedures. This work proposes a parametric modeling approach for transcatheter heart valves (THVs) that enables flexible valvular development and sizing to effectively generate existing and novel valve designs. This study showcases two THV configurations that are analyzed using an immersogeometric fluid–structure interaction (IMGA FSI) framework to demonstrate the influence of geometric changes on THV performance. The proposed modeling framework illustrates the impact of these features on THV behavior and indicates the effectiveness of parametric modeling approaches for enhancing THV performance and efficacy in the future.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.