{"title":"Zanthoxylum 烷基酰胺可缓解细胞周期停滞和氧化应激,从而延缓 d-半乳糖诱导的衰老","authors":"Yuping Zhu, Pan Yang, Suzhen Zhai, Chunlin Zhang","doi":"10.1007/s10068-024-01599-9","DOIUrl":null,"url":null,"abstract":"<div><p>During the aging process, the abilities to maintain homeostasis and resist stress decrease, leading to degenerative changes in tissues and organs. The pathological process of aging is characterized by oxidative stress and cell cycle arrest. <i>Zanthoxylum</i> alkylamides (ZA) can mitigate hepatic oxidative stress. However, whether ZA can delay aging and the underlying mechanisms are unclear. Herein, ZA were shown to inhibit <span>d</span>-galactose-induced aging in a dose-dependent manner. ZA activated CyclinD1 and CyclinE2 to exert anti-cell cycle arrest effects and activated the Nrf2/HO1 pathway to reduce the accumulated intracellular reactive oxygen species (ROS) and improve antioxidant capacity. Moreover, motor coordination and spontaneous exploration were improved in aging mice administered ZA. Overall, ZA alleviated cell cycle arrest and oxidative stress to delay <span>d</span>-galactose-induced aging.</p></div>","PeriodicalId":566,"journal":{"name":"Food Science and Biotechnology","volume":"33 15","pages":"3541 - 3552"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zanthoxylum alkylamides alleviate cell cycle arrest and oxidative stress to retard d-galactose-induced aging\",\"authors\":\"Yuping Zhu, Pan Yang, Suzhen Zhai, Chunlin Zhang\",\"doi\":\"10.1007/s10068-024-01599-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During the aging process, the abilities to maintain homeostasis and resist stress decrease, leading to degenerative changes in tissues and organs. The pathological process of aging is characterized by oxidative stress and cell cycle arrest. <i>Zanthoxylum</i> alkylamides (ZA) can mitigate hepatic oxidative stress. However, whether ZA can delay aging and the underlying mechanisms are unclear. Herein, ZA were shown to inhibit <span>d</span>-galactose-induced aging in a dose-dependent manner. ZA activated CyclinD1 and CyclinE2 to exert anti-cell cycle arrest effects and activated the Nrf2/HO1 pathway to reduce the accumulated intracellular reactive oxygen species (ROS) and improve antioxidant capacity. Moreover, motor coordination and spontaneous exploration were improved in aging mice administered ZA. Overall, ZA alleviated cell cycle arrest and oxidative stress to delay <span>d</span>-galactose-induced aging.</p></div>\",\"PeriodicalId\":566,\"journal\":{\"name\":\"Food Science and Biotechnology\",\"volume\":\"33 15\",\"pages\":\"3541 - 3552\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10068-024-01599-9\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10068-024-01599-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Zanthoxylum alkylamides alleviate cell cycle arrest and oxidative stress to retard d-galactose-induced aging
During the aging process, the abilities to maintain homeostasis and resist stress decrease, leading to degenerative changes in tissues and organs. The pathological process of aging is characterized by oxidative stress and cell cycle arrest. Zanthoxylum alkylamides (ZA) can mitigate hepatic oxidative stress. However, whether ZA can delay aging and the underlying mechanisms are unclear. Herein, ZA were shown to inhibit d-galactose-induced aging in a dose-dependent manner. ZA activated CyclinD1 and CyclinE2 to exert anti-cell cycle arrest effects and activated the Nrf2/HO1 pathway to reduce the accumulated intracellular reactive oxygen species (ROS) and improve antioxidant capacity. Moreover, motor coordination and spontaneous exploration were improved in aging mice administered ZA. Overall, ZA alleviated cell cycle arrest and oxidative stress to delay d-galactose-induced aging.
期刊介绍:
The FSB journal covers food chemistry and analysis for compositional and physiological activity changes, food hygiene and toxicology, food microbiology and biotechnology, and food engineering involved in during and after food processing through physical, chemical, and biological ways. Consumer perception and sensory evaluation on processed foods are accepted only when they are relevant to the laboratory research work. As a general rule, manuscripts dealing with analysis and efficacy of extracts from natural resources prior to the processing or without any related food processing may not be considered within the scope of the journal. The FSB journal does not deal with only local interest and a lack of significant scientific merit. The main scope of our journal is seeking for human health and wellness through constructive works and new findings in food science and biotechnology field.