{"title":"具有粗糙系数和控制约束条件的椭圆分布式最优控制问题的多尺度有限元方法","authors":"Susanne C. Brenner, José C. Garay, Li-yeng Sung","doi":"10.1007/s10915-024-02590-6","DOIUrl":null,"url":null,"abstract":"<p>We construct and analyze a multiscale finite element method for an elliptic distributed optimal control problem with pointwise control constraints, where the state equation has rough coefficients. We show that the performance of the multiscale finite element method is similar to the performance of standard finite element methods for smooth problems and present corroborating numerical results.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multiscale Finite Element Method for an Elliptic Distributed Optimal Control Problem with Rough Coefficients and Control Constraints\",\"authors\":\"Susanne C. Brenner, José C. Garay, Li-yeng Sung\",\"doi\":\"10.1007/s10915-024-02590-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct and analyze a multiscale finite element method for an elliptic distributed optimal control problem with pointwise control constraints, where the state equation has rough coefficients. We show that the performance of the multiscale finite element method is similar to the performance of standard finite element methods for smooth problems and present corroborating numerical results.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02590-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02590-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A Multiscale Finite Element Method for an Elliptic Distributed Optimal Control Problem with Rough Coefficients and Control Constraints
We construct and analyze a multiscale finite element method for an elliptic distributed optimal control problem with pointwise control constraints, where the state equation has rough coefficients. We show that the performance of the multiscale finite element method is similar to the performance of standard finite element methods for smooth problems and present corroborating numerical results.