MOFs 及其衍生物在缓解空气污染方面的进展

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Advanced Composites and Hybrid Materials Pub Date : 2024-07-02 DOI:10.1007/s42114-024-00930-6
Xiaoyi Duan, Xiangmeng Chen, Cheng Li, Erin Witherspoon, Ethan Burcar, Zhe Wang, Wanxi Peng, Aricson Pereira, Hanyin Li
{"title":"MOFs 及其衍生物在缓解空气污染方面的进展","authors":"Xiaoyi Duan,&nbsp;Xiangmeng Chen,&nbsp;Cheng Li,&nbsp;Erin Witherspoon,&nbsp;Ethan Burcar,&nbsp;Zhe Wang,&nbsp;Wanxi Peng,&nbsp;Aricson Pereira,&nbsp;Hanyin Li","doi":"10.1007/s42114-024-00930-6","DOIUrl":null,"url":null,"abstract":"<div><p>The post-industrial revolution era has witnessed unprecedented economic and technological growth, leading to a significant surge in population and industrial advancements. However, this rapid progress has been accompanied by a concerning increase in environmental degradation, resulting in mass extinctions and posing a serious threat to both ecosystems and human health. Addressing these pressing challenges requires innovative solutions. Metal-organic frameworks (MOFs), which are crystalline structures made of metal ions or clusters interwoven with organic ligands, are one intriguing technique. MOFs have gotten a lot of interest because of their amazing specific surface area, tunable pore size, and adaptability. Their development holds significant potential for mitigating industrial waste gas emissions and improving environmental quality across various applications. This comprehensive review delves into the pivotal role of MOFs in air purification. Beginning with an exploration of the hazards, origins, and complexities of haze, the review meticulously examines the applications of MOFs in addressing various pollutants, including SO<sub>2</sub>, NO<sub>x</sub>, PM<sub>2.5</sub>, automobile exhaust, coal-fired flue gas, fuel emissions, and incineration byproducts. Each section provides insight into design principles, adsorption mechanisms, and transformation processes for effective pollutant mitigation. Overall, this review demonstrates an array of effective and environmentally sound technical methodologies, underscoring the pivotal role of MOFs in combating multifaceted air pollution. It serves as a valuable resource for researchers and practitioners seeking sustainable solutions to complex environmental challenges.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 4","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress of MOFs and their derivatives for mitigating air pollution\",\"authors\":\"Xiaoyi Duan,&nbsp;Xiangmeng Chen,&nbsp;Cheng Li,&nbsp;Erin Witherspoon,&nbsp;Ethan Burcar,&nbsp;Zhe Wang,&nbsp;Wanxi Peng,&nbsp;Aricson Pereira,&nbsp;Hanyin Li\",\"doi\":\"10.1007/s42114-024-00930-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The post-industrial revolution era has witnessed unprecedented economic and technological growth, leading to a significant surge in population and industrial advancements. However, this rapid progress has been accompanied by a concerning increase in environmental degradation, resulting in mass extinctions and posing a serious threat to both ecosystems and human health. Addressing these pressing challenges requires innovative solutions. Metal-organic frameworks (MOFs), which are crystalline structures made of metal ions or clusters interwoven with organic ligands, are one intriguing technique. MOFs have gotten a lot of interest because of their amazing specific surface area, tunable pore size, and adaptability. Their development holds significant potential for mitigating industrial waste gas emissions and improving environmental quality across various applications. This comprehensive review delves into the pivotal role of MOFs in air purification. Beginning with an exploration of the hazards, origins, and complexities of haze, the review meticulously examines the applications of MOFs in addressing various pollutants, including SO<sub>2</sub>, NO<sub>x</sub>, PM<sub>2.5</sub>, automobile exhaust, coal-fired flue gas, fuel emissions, and incineration byproducts. Each section provides insight into design principles, adsorption mechanisms, and transformation processes for effective pollutant mitigation. Overall, this review demonstrates an array of effective and environmentally sound technical methodologies, underscoring the pivotal role of MOFs in combating multifaceted air pollution. It serves as a valuable resource for researchers and practitioners seeking sustainable solutions to complex environmental challenges.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-00930-6\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00930-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

后工业革命时代见证了前所未有的经济和技术增长,导致人口大幅激增和工业进步。然而,在快速发展的同时,环境退化也在加剧,导致了大规模的物种灭绝,对生态系统和人类健康都构成了严重威胁。应对这些紧迫的挑战需要创新的解决方案。金属有机框架(MOFs)是由金属离子或金属团簇与有机配体交织而成的晶体结构,是一种引人入胜的技术。MOF 因其惊人的比表面积、可调孔径和适应性而备受关注。MOFs 的开发为缓解工业废气排放和改善各种应用领域的环境质量带来了巨大潜力。本综述深入探讨了 MOFs 在空气净化中的关键作用。该综述从探讨雾霾的危害、起源和复杂性开始,仔细研究了 MOFs 在处理各种污染物方面的应用,包括二氧化硫、氮氧化物、PM2.5、汽车尾气、燃煤烟气、燃料排放物和焚烧副产品。每一部分都深入介绍了有效缓解污染物的设计原理、吸附机制和转化过程。总之,本综述展示了一系列有效且环保的技术方法,强调了 MOFs 在应对多方面空气污染中的关键作用。对于寻求复杂环境挑战可持续解决方案的研究人员和从业人员来说,它是一份宝贵的资料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progress of MOFs and their derivatives for mitigating air pollution

The post-industrial revolution era has witnessed unprecedented economic and technological growth, leading to a significant surge in population and industrial advancements. However, this rapid progress has been accompanied by a concerning increase in environmental degradation, resulting in mass extinctions and posing a serious threat to both ecosystems and human health. Addressing these pressing challenges requires innovative solutions. Metal-organic frameworks (MOFs), which are crystalline structures made of metal ions or clusters interwoven with organic ligands, are one intriguing technique. MOFs have gotten a lot of interest because of their amazing specific surface area, tunable pore size, and adaptability. Their development holds significant potential for mitigating industrial waste gas emissions and improving environmental quality across various applications. This comprehensive review delves into the pivotal role of MOFs in air purification. Beginning with an exploration of the hazards, origins, and complexities of haze, the review meticulously examines the applications of MOFs in addressing various pollutants, including SO2, NOx, PM2.5, automobile exhaust, coal-fired flue gas, fuel emissions, and incineration byproducts. Each section provides insight into design principles, adsorption mechanisms, and transformation processes for effective pollutant mitigation. Overall, this review demonstrates an array of effective and environmentally sound technical methodologies, underscoring the pivotal role of MOFs in combating multifaceted air pollution. It serves as a valuable resource for researchers and practitioners seeking sustainable solutions to complex environmental challenges.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
期刊最新文献
Photocatalytic degradation of Toluene by three-dimensional monolithic Titanium Dioxide / Cuprous Oxide foams with Z-schemed Heterojunction Development and characterization of zein/gum Arabic nanocomposites incorporated edible films for improving strawberry preservation Dynamically interactive nanoparticles in three-dimensional microbeads for enhanced sensitivity, stability, and filtration in colorimetric sensing Efficient charge separation in Z-scheme heterojunctions induced by chemical bonding-enhanced internal electric field for promoting photocatalytic conversion of corn stover to C1/C2 gases Multifunctional PVA/PNIPAM conductive hydrogel sensors enabled human-machine interaction intelligent rehabilitation training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1