利用非形式离散化的混合无网格-有限元法进行三维磁暴建模

IF 2.8 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Geophysical Journal International Pub Date : 2024-06-21 DOI:10.1093/gji/ggae215
Jin Cao, Yunhe Liu, Changchun Yin, Haoman Wang, Yang Su, Luyuan Wang, Xinpeng Ma, Bo Zhang
{"title":"利用非形式离散化的混合无网格-有限元法进行三维磁暴建模","authors":"Jin Cao, Yunhe Liu, Changchun Yin, Haoman Wang, Yang Su, Luyuan Wang, Xinpeng Ma, Bo Zhang","doi":"10.1093/gji/ggae215","DOIUrl":null,"url":null,"abstract":"Summary We propose a novel method for three-dimensional (3D) magnetotelluric (MT) forward modeling based on hybrid meshless and finite-element (FE) methods. This method divides the earth model into a central computational region and an expansion one. For the central region, we adopt scatter points to discretize the model, which can flexibly and accurately characterize the complex structures without generating unstructured mesh. The meshless method using compact support radial basis function is applied to simulate this area's electromagnetic (EM) field. While in the expansion region, to avoid the heavy time consumption and numerical error of the meshless method caused by non-uniform nodes, we adopt a node-based finite-element method with regular hexahedral mesh for stability. Finally, the two discretized systems are coupled at the interface nodes according to the continuity conditions of vector and scalar potentials. Considering that the normal electric field is discontinuous at the interface with resistivity discontinuity, while the shape functions for the meshless method are continuous, we further adopt the visibility criterion in constructing the support region. Numerical experiments on typical models show that using the same degree of freedom (DOF), the hybrid meshless-FEM (HMF) algorithm has higher accuracy than the node-based finite element method (FEM) and meshless method. In addition, the electric field discontinuity at interfaces is well preserved, which proves the effectiveness of the visibility criterion method. In general, compared to the conventional grid-based method, this new approach doesn't need the complex mesh generation for complex structures and can achieve high accuracy, thus it has the potential to become a powerful 3D MT forward modeling technique.","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid meshless-FEM method for 3D magnetotelluric modeling using non-conformal discretization\",\"authors\":\"Jin Cao, Yunhe Liu, Changchun Yin, Haoman Wang, Yang Su, Luyuan Wang, Xinpeng Ma, Bo Zhang\",\"doi\":\"10.1093/gji/ggae215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary We propose a novel method for three-dimensional (3D) magnetotelluric (MT) forward modeling based on hybrid meshless and finite-element (FE) methods. This method divides the earth model into a central computational region and an expansion one. For the central region, we adopt scatter points to discretize the model, which can flexibly and accurately characterize the complex structures without generating unstructured mesh. The meshless method using compact support radial basis function is applied to simulate this area's electromagnetic (EM) field. While in the expansion region, to avoid the heavy time consumption and numerical error of the meshless method caused by non-uniform nodes, we adopt a node-based finite-element method with regular hexahedral mesh for stability. Finally, the two discretized systems are coupled at the interface nodes according to the continuity conditions of vector and scalar potentials. Considering that the normal electric field is discontinuous at the interface with resistivity discontinuity, while the shape functions for the meshless method are continuous, we further adopt the visibility criterion in constructing the support region. Numerical experiments on typical models show that using the same degree of freedom (DOF), the hybrid meshless-FEM (HMF) algorithm has higher accuracy than the node-based finite element method (FEM) and meshless method. In addition, the electric field discontinuity at interfaces is well preserved, which proves the effectiveness of the visibility criterion method. In general, compared to the conventional grid-based method, this new approach doesn't need the complex mesh generation for complex structures and can achieve high accuracy, thus it has the potential to become a powerful 3D MT forward modeling technique.\",\"PeriodicalId\":12519,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae215\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/gji/ggae215","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们提出了一种基于无网格和有限元(FE)混合方法的三维(3D)磁流体(MT)正演建模新方法。该方法将地球模型分为中心计算区域和扩展计算区域。对于中心区域,我们采用散点离散模型,无需生成非结构网格,即可灵活准确地表征复杂结构。采用紧凑支撑径向基函数的无网格方法来模拟该区域的电磁场。而在膨胀区域,为了避免无网格法因节点不均匀而导致的大量时间消耗和数值误差,我们采用了基于节点的有限元方法,并使用规则的六面体网格以确保稳定性。最后,根据矢量电势和标量电势的连续性条件,在界面节点处耦合两个离散系统。考虑到法向电场在具有电阻率不连续的界面上是不连续的,而无网格法的形状函数是连续的,我们在构建支撑区域时进一步采用了可见性准则。典型模型的数值实验表明,在相同自由度(DOF)下,混合无网格-有限元(HMF)算法比基于节点的有限元方法(FEM)和无网格方法具有更高的精度。此外,界面处的电场不连续性也得到了很好的保留,这证明了可见性准则方法的有效性。总体而言,与传统的基于网格的方法相比,这种新方法无需为复杂结构生成复杂网格,并能达到很高的精度,因此有望成为一种强大的三维 MT 正演建模技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid meshless-FEM method for 3D magnetotelluric modeling using non-conformal discretization
Summary We propose a novel method for three-dimensional (3D) magnetotelluric (MT) forward modeling based on hybrid meshless and finite-element (FE) methods. This method divides the earth model into a central computational region and an expansion one. For the central region, we adopt scatter points to discretize the model, which can flexibly and accurately characterize the complex structures without generating unstructured mesh. The meshless method using compact support radial basis function is applied to simulate this area's electromagnetic (EM) field. While in the expansion region, to avoid the heavy time consumption and numerical error of the meshless method caused by non-uniform nodes, we adopt a node-based finite-element method with regular hexahedral mesh for stability. Finally, the two discretized systems are coupled at the interface nodes according to the continuity conditions of vector and scalar potentials. Considering that the normal electric field is discontinuous at the interface with resistivity discontinuity, while the shape functions for the meshless method are continuous, we further adopt the visibility criterion in constructing the support region. Numerical experiments on typical models show that using the same degree of freedom (DOF), the hybrid meshless-FEM (HMF) algorithm has higher accuracy than the node-based finite element method (FEM) and meshless method. In addition, the electric field discontinuity at interfaces is well preserved, which proves the effectiveness of the visibility criterion method. In general, compared to the conventional grid-based method, this new approach doesn't need the complex mesh generation for complex structures and can achieve high accuracy, thus it has the potential to become a powerful 3D MT forward modeling technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Journal International
Geophysical Journal International 地学-地球化学与地球物理
CiteScore
5.40
自引率
10.70%
发文量
436
审稿时长
3.3 months
期刊介绍: Geophysical Journal International publishes top quality research papers, express letters, invited review papers and book reviews on all aspects of theoretical, computational, applied and observational geophysics.
期刊最新文献
A rapid analysis of aftershock processes after a moderate magnitude earthquake with ML-methods Influence of upwelling mantle magmas on cratonic crust implied from Vp/Vs beneath South America platform Observations from the Seafloor: Ultra-low-frequency ambient ocean-bottom nodal seismology at the amendment field Upscaling from Mineral Microstructures to Tectonic Macrostructures Towards a new standard for seismic moment tensor inversion containing 3D Earth structure uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1