Pub Date : 2023-06-19eCollection Date: 2023-09-01DOI: 10.1093/gji/ggad243
Christine Chesley, Samer Naif, Kerry Key
The dynamics of accretionary prisms and the processes that take place along subduction interfaces are controlled, in part, by the porosity and fluid overpressure of both the forearc wedge and the sediments transported to the system by the subducting plate. The Hikurangi Margin, located offshore the North Island of New Zealand, is a particularly relevant area to investigate the interplay between the consolidation state of incoming plate sediments, dewatering and fluid flow in the accretionary wedge and observed geodetic coupling and megathrust slip behaviour along the plate interface. In its short geographic extent, the margin hosts a diversity of properties that impact subduction processes and that transition from north to south. Its southernmost limit is characterized by frontal accretion, thick sediment subduction, the absence of seafloor roughness, strong interseismic coupling and deep slow slip events. Here we use seafloor magnetotelluric (MT) and controlled-source electromagnetic (CSEM) data collected along a profile through the southern Hikurangi Margin to image the electrical resistivity of the forearc and incoming plate. Resistive anomalies in the shallow forearc likely indicate the presence of gas hydrates, and we relate deeper forerarc resistors to thrust faulting imaged in colocated seismic reflection data. Because MT and CSEM data are highly sensitive to fluid phases in the pore spaces of seafloor sediments and oceanic crust, we convert resistivity to porosity to obtain a representation of fluid distribution along the profile. We show that porosity predicted by the resistivity data can be well fit by an exponential sediment compaction model. By removing this compaction trend from the porosity model, we are able to evaluate the second-order, lateral changes in porosity, an approach that can be applied to EM data sets from other sedimentary basins. Using this porosity anomaly model, we examine the consolidation state of the incoming plate and accretionary wedge sediments. A decrease in porosity observed in the sediments approaching the trench suggests that a protothrust zone is developing ∼25 km seaward of the frontal thrust. Our data also imply that sediments deeper in the accretionary wedge are slightly underconsolidated, which may indicate incomplete drainage and elevated fluid overpressures of the deep wedge.
{"title":"Characterizing the porosity structure and gas hydrate distribution at the southern Hikurangi Margin, New Zealand from offshore electromagnetic data.","authors":"Christine Chesley, Samer Naif, Kerry Key","doi":"10.1093/gji/ggad243","DOIUrl":"10.1093/gji/ggad243","url":null,"abstract":"<p><p>The dynamics of accretionary prisms and the processes that take place along subduction interfaces are controlled, in part, by the porosity and fluid overpressure of both the forearc wedge and the sediments transported to the system by the subducting plate. The Hikurangi Margin, located offshore the North Island of New Zealand, is a particularly relevant area to investigate the interplay between the consolidation state of incoming plate sediments, dewatering and fluid flow in the accretionary wedge and observed geodetic coupling and megathrust slip behaviour along the plate interface. In its short geographic extent, the margin hosts a diversity of properties that impact subduction processes and that transition from north to south. Its southernmost limit is characterized by frontal accretion, thick sediment subduction, the absence of seafloor roughness, strong interseismic coupling and deep slow slip events. Here we use seafloor magnetotelluric (MT) and controlled-source electromagnetic (CSEM) data collected along a profile through the southern Hikurangi Margin to image the electrical resistivity of the forearc and incoming plate. Resistive anomalies in the shallow forearc likely indicate the presence of gas hydrates, and we relate deeper forerarc resistors to thrust faulting imaged in colocated seismic reflection data. Because MT and CSEM data are highly sensitive to fluid phases in the pore spaces of seafloor sediments and oceanic crust, we convert resistivity to porosity to obtain a representation of fluid distribution along the profile. We show that porosity predicted by the resistivity data can be well fit by an exponential sediment compaction model. By removing this compaction trend from the porosity model, we are able to evaluate the second-order, lateral changes in porosity, an approach that can be applied to EM data sets from other sedimentary basins. Using this porosity anomaly model, we examine the consolidation state of the incoming plate and accretionary wedge sediments. A decrease in porosity observed in the sediments approaching the trench suggests that a protothrust zone is developing ∼25 km seaward of the frontal thrust. Our data also imply that sediments deeper in the accretionary wedge are slightly underconsolidated, which may indicate incomplete drainage and elevated fluid overpressures of the deep wedge.</p>","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"234 3","pages":"2412-2429"},"PeriodicalIF":2.8,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10318212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-03eCollection Date: 2023-09-01DOI: 10.1093/gji/ggad176
Rexha Verdhora Ry, Phil R Cummins, Babak Hejrani, Sri Widiyantoro
Situated on the northern coast of the Indonesian island of Java, Jakarta and its metropolitan area (Greater Jakarta) are subject to significant earthquake hazards from a subduction zone south of Java and nearby active crustal faults. The seismic risk may be even higher because Greater Jakarta resides on a sedimentary basin filled with thick Pliocene-Pleistocene sediments. A comprehensive study of Jakarta Basin's properties and geometry is important for creating robust seismic hazard and risk assessments. The main objective of this study is to develop a 3-D model of Jakarta Basin's shallow shear-wave velocity (VS ) structure and improve on previous models that did not cover the basin edge due to the extent of data coverage. Between April and October 2018, we deployed a new temporary seismic network to extend the spatial coverage beyond that of a previous deployment in 2013, and sampled 143 locations through sequential deployments of 30 broad-band sensors covering Jakarta and its adjacent areas. We conducted a 2-stage transdimensional Bayesian inversion of Rayleigh wave phase velocity dispersion curves derived from seismic noise. To begin, we applied tomography and constructed 2-D phase velocity maps for periods 1-5 s. Then, at each point in a regular grid defined on these maps, we invert each dispersion curve into 1-D depth profiles of VS . Finally, these profiles at gridpoints with ∼2 km spacing are interpolated to form a pseudo-3-D VS model. Our results reveal the edge of the Pliocene-Pleistocene sediments along the south. Also, we resolve a basement offset across south Jakarta that we suggest may be related to the western extension of the Baribis Fault (alternatively, the West Java Backarc Thrust). We recommend using this 3-D model of the Jakarta Basin for scenario earthquake ground motion simulations. Such simulations would help establish how important it might be to re-assess seismic hazard and risk in Greater Jakarta so that basin resonance and amplification are considered.
{"title":"3-D shallow shear velocity structure of the Jakarta Basin from transdimensional ambient noise tomography.","authors":"Rexha Verdhora Ry, Phil R Cummins, Babak Hejrani, Sri Widiyantoro","doi":"10.1093/gji/ggad176","DOIUrl":"10.1093/gji/ggad176","url":null,"abstract":"<p><p>Situated on the northern coast of the Indonesian island of Java, Jakarta and its metropolitan area (Greater Jakarta) are subject to significant earthquake hazards from a subduction zone south of Java and nearby active crustal faults. The seismic risk may be even higher because Greater Jakarta resides on a sedimentary basin filled with thick Pliocene-Pleistocene sediments. A comprehensive study of Jakarta Basin's properties and geometry is important for creating robust seismic hazard and risk assessments. The main objective of this study is to develop a 3-D model of Jakarta Basin's shallow shear-wave velocity (<i>V<sub>S</sub></i> ) structure and improve on previous models that did not cover the basin edge due to the extent of data coverage. Between April and October 2018, we deployed a new temporary seismic network to extend the spatial coverage beyond that of a previous deployment in 2013, and sampled 143 locations through sequential deployments of 30 broad-band sensors covering Jakarta and its adjacent areas. We conducted a 2-stage transdimensional Bayesian inversion of Rayleigh wave phase velocity dispersion curves derived from seismic noise. To begin, we applied tomography and constructed 2-D phase velocity maps for periods 1-5 s. Then, at each point in a regular grid defined on these maps, we invert each dispersion curve into 1-D depth profiles of <i>V<sub>S</sub></i> . Finally, these profiles at gridpoints with ∼2 km spacing are interpolated to form a pseudo-3-D <i>V<sub>S</sub></i> model. Our results reveal the edge of the Pliocene-Pleistocene sediments along the south. Also, we resolve a basement offset across south Jakarta that we suggest may be related to the western extension of the Baribis Fault (alternatively, the West Java Backarc Thrust). We recommend using this 3-D model of the Jakarta Basin for scenario earthquake ground motion simulations. Such simulations would help establish how important it might be to re-assess seismic hazard and risk in Greater Jakarta so that basin resonance and amplification are considered.</p>","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"234 3","pages":"1916-1932"},"PeriodicalIF":2.8,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9857366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Here we qualitatively analyse the mass change patterns across Antarctica via independent component analysis (ICA), a statistics-based blind source separation method to extract signals from complex data sets, in an attempt to reduce uncertainties in the glacial isostatic adjustment (GIA) effects and improve understanding of Antarctic Ice Sheet (AIS) mass-balance. We extract the six leading independent components from gravimetric data acquired during the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions. The results reveal that the observed continental-scale mass changes can be effectively separated into several spatial patterns that may be dominated by different physical processes. Although the hidden independent physical processes cannot be completely isolated, some significant signals, such as glacier melt, snow accumulation, periodic climatic signals, and GIA effects, can be determined without introducing any external information. We also observe that the time period of the analysed data set has a direct impact on the ICA results, as the impacts of extreme events, such as the anomalously large snowfall events in the late 2000s, may cause dramatic spatial and temporal changes in the ICA results. ICA provides a unique and informative approach to obtain a better understanding of both AIS-scale mass changes and specific regional-scale spatiotemporal signal variations.
{"title":"Extraction of GRACE/GRACE-FO observed mass change patterns across Antarctica via independent component analysis (ICA).","authors":"Tianyan Shi, Yoichi Fukuda, Koichiro Doi, Jun'ichi Okuno","doi":"10.1093/gji/ggac033","DOIUrl":"https://doi.org/10.1093/gji/ggac033","url":null,"abstract":"<p><p>Here we qualitatively analyse the mass change patterns across Antarctica via independent component analysis (ICA), a statistics-based blind source separation method to extract signals from complex data sets, in an attempt to reduce uncertainties in the glacial isostatic adjustment (GIA) effects and improve understanding of Antarctic Ice Sheet (AIS) mass-balance. We extract the six leading independent components from gravimetric data acquired during the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions. The results reveal that the observed continental-scale mass changes can be effectively separated into several spatial patterns that may be dominated by different physical processes. Although the hidden independent physical processes cannot be completely isolated, some significant signals, such as glacier melt, snow accumulation, periodic climatic signals, and GIA effects, can be determined without introducing any external information. We also observe that the time period of the analysed data set has a direct impact on the ICA results, as the impacts of extreme events, such as the anomalously large snowfall events in the late 2000s, may cause dramatic spatial and temporal changes in the ICA results. ICA provides a unique and informative approach to obtain a better understanding of both AIS-scale mass changes and specific regional-scale spatiotemporal signal variations.</p>","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"229 3","pages":"1914-1926"},"PeriodicalIF":2.8,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8884697/pdf/ggac033.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10623018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We recompute the 26-yr weekly Geocentre Motion (GCM) time-series from 1994 to 2020 through the network shift approach using Satellite Laser Ranging (SLR) observations to LAGEOS1/2. Then the Singular Spectrum Analysis (SSA) is applied for the first time to separate and investigate the geophysical signals from the GCM time-series. The Principal Components (PCs) of the embedded covariance matrix of SSA from the GCM time-series are determined based on the w-correlation criterion and two PCs with large w-correlation are regarded as one periodic signal pair. The results indicate that the annual signal in all three coordinate components and semi-annual signal in both X and Z components are detected. The annual signal from this study agrees well in both amplitude and phase with those derived by the Astronomical Institute of the University of Bern and the Center for Space Research, especially for the Y and Z components. Besides, the other periodic signals with the periods of (1043.6, 85, 28), (570, 280, 222.7) and (14.1, 15.3) days are also quantitatively explored for the first time from the GCM time-series by using SSA, interpreting the corresponding geophysical and astrodynamic sources of aliasing effects of K 1