Weiyi Tan, Qiuxin Zhang, Mikki Lee, William Lau, Bing Xu
{"title":"酶促控制分子间相互作用,在细胞环境中生成合成纳米结构","authors":"Weiyi Tan, Qiuxin Zhang, Mikki Lee, William Lau, Bing Xu","doi":"10.1080/14686996.2024.2373045","DOIUrl":null,"url":null,"abstract":"Nanoarchitectonics, as a technology to arrange nano-sized structural units such as molecules in a desired configuration, requires nano-organization, which usually relies on intermolecular interacti...","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"80 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzymatic control of intermolecular interactions for generating synthetic nanoarchitectures in cellular environment\",\"authors\":\"Weiyi Tan, Qiuxin Zhang, Mikki Lee, William Lau, Bing Xu\",\"doi\":\"10.1080/14686996.2024.2373045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoarchitectonics, as a technology to arrange nano-sized structural units such as molecules in a desired configuration, requires nano-organization, which usually relies on intermolecular interacti...\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2024.2373045\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2373045","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enzymatic control of intermolecular interactions for generating synthetic nanoarchitectures in cellular environment
Nanoarchitectonics, as a technology to arrange nano-sized structural units such as molecules in a desired configuration, requires nano-organization, which usually relies on intermolecular interacti...
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.