腿部机械手机器人的 MR-VR 远程操作方法分析

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Virtual Reality Pub Date : 2024-07-02 DOI:10.1007/s10055-024-01021-z
Christyan Cruz Ulloa, David Domínguez, Jaime del Cerro, Antonio Barrientos
{"title":"腿部机械手机器人的 MR-VR 远程操作方法分析","authors":"Christyan Cruz Ulloa, David Domínguez, Jaime del Cerro, Antonio Barrientos","doi":"10.1007/s10055-024-01021-z","DOIUrl":null,"url":null,"abstract":"<p>The development of immersive technologies in recent years has facilitated the control and execution of tasks at a high level of complexity in robotic systems. On the other hand, exploration and manipulation tasks in unknown environments have been one of the main challenges in search and rescue (SAR) robotics. Due to the complexity and uncertainty involved in autonomous manipulation tasks in unstructured environments, these are usually tele-operated initially. This article addresses a comparative study between Mixed Reality (MR—Hololens) and Virtual Reality (VR—HTC-Vive) methods for teleoperating legged-manipulator robots in the context of search and rescue. For this purpose, a teleoperation robotics method was established to address the comparison, developing VR–MR interfaces with the same contextualization and operational functionality for mission management and robot control of a robotic set composed of a quadrupedal robot equipped with a 6 degrees of freedom (6DoF) manipulator, by a user using hand gestures. A set of metrics is proposed for the comparative evaluation of the interfaces considering parameters that allow analyzing operability in the context of the mission (latencies, physical parameters of the equipment, etc.), as well as from the aspect of operator performance (required training, confidence levels, etc.). The experimental phase was conducted using both on-site and remote operations to evaluate and categorize the advantages and disadvantages of each method.</p>","PeriodicalId":23727,"journal":{"name":"Virtual Reality","volume":"121 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of MR–VR tele-operation methods for legged-manipulator robots\",\"authors\":\"Christyan Cruz Ulloa, David Domínguez, Jaime del Cerro, Antonio Barrientos\",\"doi\":\"10.1007/s10055-024-01021-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of immersive technologies in recent years has facilitated the control and execution of tasks at a high level of complexity in robotic systems. On the other hand, exploration and manipulation tasks in unknown environments have been one of the main challenges in search and rescue (SAR) robotics. Due to the complexity and uncertainty involved in autonomous manipulation tasks in unstructured environments, these are usually tele-operated initially. This article addresses a comparative study between Mixed Reality (MR—Hololens) and Virtual Reality (VR—HTC-Vive) methods for teleoperating legged-manipulator robots in the context of search and rescue. For this purpose, a teleoperation robotics method was established to address the comparison, developing VR–MR interfaces with the same contextualization and operational functionality for mission management and robot control of a robotic set composed of a quadrupedal robot equipped with a 6 degrees of freedom (6DoF) manipulator, by a user using hand gestures. A set of metrics is proposed for the comparative evaluation of the interfaces considering parameters that allow analyzing operability in the context of the mission (latencies, physical parameters of the equipment, etc.), as well as from the aspect of operator performance (required training, confidence levels, etc.). The experimental phase was conducted using both on-site and remote operations to evaluate and categorize the advantages and disadvantages of each method.</p>\",\"PeriodicalId\":23727,\"journal\":{\"name\":\"Virtual Reality\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Reality\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10055-024-01021-z\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10055-024-01021-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,身临其境技术的发展为机器人系统控制和执行复杂度较高的任务提供了便利。另一方面,在未知环境中探索和操纵任务一直是搜救(SAR)机器人技术的主要挑战之一。由于非结构化环境中的自主操纵任务具有复杂性和不确定性,因此最初通常采用遥控操作。本文对混合现实(MR-Hololens)和虚拟现实(VR-HTC-Vive)方法进行了比较研究,以便在搜救背景下远程操作腿部机械手机器人。为此,建立了一种远程操作机器人的方法来进行比较,开发了具有相同情境化和操作功能的 VR-MR 界面,用于任务管理和机器人控制,该机器人集由配备 6 自由度(6DoF)机械手的四足机器人组成,由用户使用手势操作。考虑到在任务背景下分析可操作性的参数(延迟、设备的物理参数等),以及操作员的表现(所需的培训、信心水平等),提出了一套对界面进行比较评估的指标。实验阶段采用现场操作和远程操作两种方法,对每种方法的优缺点进行评估和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of MR–VR tele-operation methods for legged-manipulator robots

The development of immersive technologies in recent years has facilitated the control and execution of tasks at a high level of complexity in robotic systems. On the other hand, exploration and manipulation tasks in unknown environments have been one of the main challenges in search and rescue (SAR) robotics. Due to the complexity and uncertainty involved in autonomous manipulation tasks in unstructured environments, these are usually tele-operated initially. This article addresses a comparative study between Mixed Reality (MR—Hololens) and Virtual Reality (VR—HTC-Vive) methods for teleoperating legged-manipulator robots in the context of search and rescue. For this purpose, a teleoperation robotics method was established to address the comparison, developing VR–MR interfaces with the same contextualization and operational functionality for mission management and robot control of a robotic set composed of a quadrupedal robot equipped with a 6 degrees of freedom (6DoF) manipulator, by a user using hand gestures. A set of metrics is proposed for the comparative evaluation of the interfaces considering parameters that allow analyzing operability in the context of the mission (latencies, physical parameters of the equipment, etc.), as well as from the aspect of operator performance (required training, confidence levels, etc.). The experimental phase was conducted using both on-site and remote operations to evaluate and categorize the advantages and disadvantages of each method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virtual Reality
Virtual Reality COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.30
自引率
14.30%
发文量
95
审稿时长
>12 weeks
期刊介绍: The journal, established in 1995, publishes original research in Virtual Reality, Augmented and Mixed Reality that shapes and informs the community. The multidisciplinary nature of the field means that submissions are welcomed on a wide range of topics including, but not limited to: Original research studies of Virtual Reality, Augmented Reality, Mixed Reality and real-time visualization applications Development and evaluation of systems, tools, techniques and software that advance the field, including: Display technologies, including Head Mounted Displays, simulators and immersive displays Haptic technologies, including novel devices, interaction and rendering Interaction management, including gesture control, eye gaze, biosensors and wearables Tracking technologies VR/AR/MR in medicine, including training, surgical simulation, rehabilitation, and tissue/organ modelling. Impactful and original applications and studies of VR/AR/MR’s utility in areas such as manufacturing, business, telecommunications, arts, education, design, entertainment and defence Research demonstrating new techniques and approaches to designing, building and evaluating virtual and augmented reality systems Original research studies assessing the social, ethical, data or legal aspects of VR/AR/MR.
期刊最新文献
Virtual reality: towards a better prediction of full body illusion — a mediation model for healthy young women Publisher Correction: Cybersickness with passenger VR in the aircraft: influence of turbulence and VR content Using in situ research-based design to explore learning module effectiveness and usability in a virtual reality system for workforce training The use of CNNs in VR/AR/MR/XR: a systematic literature review Exploring the user’s gaze during product evaluation through the semantic differential: a comparison between virtual reality and photorealistic images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1