{"title":"钢水中各类固相氧化物之间的聚结力","authors":"Katsuhiro Sasai, Takashi Morohoshi","doi":"10.2355/isijinternational.isijint-2024-135","DOIUrl":null,"url":null,"abstract":"</p><p>In this study, to elucidate the agglomeration mechanism of various inclusions in molten steel based on their interfacial chemical interactions, the agglomeration forces exerted between the solid-phase oxides of MgO, MgAl<sub>2</sub>O<sub>4</sub>, ZrO<sub>2</sub>, SiO<sub>2</sub>, and TiO<sub>2</sub> in molten steel, in addition to those between the reference material Al<sub>2</sub>O<sub>3</sub> have been measured directly. We experimentally verified for the first time that the agglomeration force due to the cavity bridge force in molten steel acts in a relatively stable manner between all solid-phase oxides that are difficult to wet with molten steel. Furthermore, this force decreased with increasing <u>O</u> concentration in molten steel, which is attributed to the interfacial activation effect caused by the adsorption of oxygen at the interface between the oxides and molten steel. The agglomeration properties of various oxide inclusions in the deoxidized molten steel were further evaluated from the perspectives of both agglomeration force and thermodynamics. Quantitative analysis indicated easy agglomeration of oxide inclusions in the order MgO < TiO<sub>2</sub> < SiO<sub>2</sub> < MgAl<sub>2</sub>O<sub>4</sub> < ZrO<sub>2</sub> < Al<sub>2</sub>O<sub>3</sub>. A comparative evaluation of the agglomeration and external forces acting on the oxide inclusions in molten steel suggests that any oxide inclusion in the deoxidized state forms cavity bridges and agglomerates and retains that state under intense molten steel flow. However, these agglomerated inclusions may separate again under a molten steel flow at a high <u>O</u> concentration. The extent of separation depends primarily on the type of oxide used.</p>\n<p></p>","PeriodicalId":14619,"journal":{"name":"Isij International","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agglomeration Force Exerted between Various Types of Solid-phase Oxides in Molten Steel\",\"authors\":\"Katsuhiro Sasai, Takashi Morohoshi\",\"doi\":\"10.2355/isijinternational.isijint-2024-135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>In this study, to elucidate the agglomeration mechanism of various inclusions in molten steel based on their interfacial chemical interactions, the agglomeration forces exerted between the solid-phase oxides of MgO, MgAl<sub>2</sub>O<sub>4</sub>, ZrO<sub>2</sub>, SiO<sub>2</sub>, and TiO<sub>2</sub> in molten steel, in addition to those between the reference material Al<sub>2</sub>O<sub>3</sub> have been measured directly. We experimentally verified for the first time that the agglomeration force due to the cavity bridge force in molten steel acts in a relatively stable manner between all solid-phase oxides that are difficult to wet with molten steel. Furthermore, this force decreased with increasing <u>O</u> concentration in molten steel, which is attributed to the interfacial activation effect caused by the adsorption of oxygen at the interface between the oxides and molten steel. The agglomeration properties of various oxide inclusions in the deoxidized molten steel were further evaluated from the perspectives of both agglomeration force and thermodynamics. Quantitative analysis indicated easy agglomeration of oxide inclusions in the order MgO < TiO<sub>2</sub> < SiO<sub>2</sub> < MgAl<sub>2</sub>O<sub>4</sub> < ZrO<sub>2</sub> < Al<sub>2</sub>O<sub>3</sub>. A comparative evaluation of the agglomeration and external forces acting on the oxide inclusions in molten steel suggests that any oxide inclusion in the deoxidized state forms cavity bridges and agglomerates and retains that state under intense molten steel flow. However, these agglomerated inclusions may separate again under a molten steel flow at a high <u>O</u> concentration. The extent of separation depends primarily on the type of oxide used.</p>\\n<p></p>\",\"PeriodicalId\":14619,\"journal\":{\"name\":\"Isij International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Isij International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2355/isijinternational.isijint-2024-135\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Isij International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2355/isijinternational.isijint-2024-135","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Agglomeration Force Exerted between Various Types of Solid-phase Oxides in Molten Steel
In this study, to elucidate the agglomeration mechanism of various inclusions in molten steel based on their interfacial chemical interactions, the agglomeration forces exerted between the solid-phase oxides of MgO, MgAl2O4, ZrO2, SiO2, and TiO2 in molten steel, in addition to those between the reference material Al2O3 have been measured directly. We experimentally verified for the first time that the agglomeration force due to the cavity bridge force in molten steel acts in a relatively stable manner between all solid-phase oxides that are difficult to wet with molten steel. Furthermore, this force decreased with increasing O concentration in molten steel, which is attributed to the interfacial activation effect caused by the adsorption of oxygen at the interface between the oxides and molten steel. The agglomeration properties of various oxide inclusions in the deoxidized molten steel were further evaluated from the perspectives of both agglomeration force and thermodynamics. Quantitative analysis indicated easy agglomeration of oxide inclusions in the order MgO < TiO2 < SiO2 < MgAl2O4 < ZrO2 < Al2O3. A comparative evaluation of the agglomeration and external forces acting on the oxide inclusions in molten steel suggests that any oxide inclusion in the deoxidized state forms cavity bridges and agglomerates and retains that state under intense molten steel flow. However, these agglomerated inclusions may separate again under a molten steel flow at a high O concentration. The extent of separation depends primarily on the type of oxide used.
期刊介绍:
The journal provides an international medium for the publication of fundamental and technological aspects of the properties, structure, characterization and modeling, processing, fabrication, and environmental issues of iron and steel, along with related engineering materials.