{"title":"耐火坩埚对含铈高铝钢中夹杂物的影响","authors":"Lanqing Wang, Hangyu Zhu, Ji Chen, Jixuan Zhao","doi":"10.1007/s11663-024-03174-3","DOIUrl":null,"url":null,"abstract":"<p>With the advancement of aerospace, military and related industries, there is a persistent escalation in the performance requirements for steel. According to the actual smelting conditions, this study focuses on Ce-containing high-aluminum steel and various refractories as its research subjects. A combination of laboratory experiments and thermodynamic calculations is employed to investigate and compare the evolution mechanism of oxide inclusions in molten steel. The use of Al<sub>2</sub>O<sub>3</sub> refractory results in an increase in [Al] content, whereas both MgO refractory and MgO–MgO·Al<sub>2</sub>O<sub>3</sub> refractory lead to a decrease in [Al] content. Additionally, following the utilization of MgO refractory and MgO–MgO·Al<sub>2</sub>O<sub>3</sub> refractory, the molten steel exhibits the higher [Ce] content than when Al<sub>2</sub>O<sub>3</sub> refractory are employed (<i>t</i> = 30 minutes). Before the introduction of Ce element, the principal oxide inclusions in Al<sub>2</sub>O<sub>3</sub> refractory and MgO-containing refractory are Al<sub>2</sub>O<sub>3</sub> and MgO·Al<sub>2</sub>O<sub>3</sub> inclusion, respectively. After adding cerium-aluminum alloy, [Ce] in the molten steel replaces the element of Al in the Al<sub>2</sub>O<sub>3</sub> inclusion, transforming into CeAlO<sub>3</sub>, while [Ce] replaces the Mg element in the MgO·Al<sub>2</sub>O<sub>3</sub> inclusion, evolving into Ce–Mg–Al–O, which further reacts to form CeAlO<sub>3</sub> and Ce<sub>2</sub>O<sub>2</sub>S. Over time, the number density of inclusions first increases then gradually diminishes with various refractories. MgO refractory minimizes the number density of inclusions to 53.05 mm<sup>−2</sup>. Moreover, the number of small size inclusions in MgO–MgO·Al<sub>2</sub>O<sub>3</sub> refractories is the largest, and inclusions less than 3 <i>μ</i>m account for 78.63 pct of the total number.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Refractory Crucibles on Inclusions in Ce-Containing High-Aluminum Steel\",\"authors\":\"Lanqing Wang, Hangyu Zhu, Ji Chen, Jixuan Zhao\",\"doi\":\"10.1007/s11663-024-03174-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the advancement of aerospace, military and related industries, there is a persistent escalation in the performance requirements for steel. According to the actual smelting conditions, this study focuses on Ce-containing high-aluminum steel and various refractories as its research subjects. A combination of laboratory experiments and thermodynamic calculations is employed to investigate and compare the evolution mechanism of oxide inclusions in molten steel. The use of Al<sub>2</sub>O<sub>3</sub> refractory results in an increase in [Al] content, whereas both MgO refractory and MgO–MgO·Al<sub>2</sub>O<sub>3</sub> refractory lead to a decrease in [Al] content. Additionally, following the utilization of MgO refractory and MgO–MgO·Al<sub>2</sub>O<sub>3</sub> refractory, the molten steel exhibits the higher [Ce] content than when Al<sub>2</sub>O<sub>3</sub> refractory are employed (<i>t</i> = 30 minutes). Before the introduction of Ce element, the principal oxide inclusions in Al<sub>2</sub>O<sub>3</sub> refractory and MgO-containing refractory are Al<sub>2</sub>O<sub>3</sub> and MgO·Al<sub>2</sub>O<sub>3</sub> inclusion, respectively. After adding cerium-aluminum alloy, [Ce] in the molten steel replaces the element of Al in the Al<sub>2</sub>O<sub>3</sub> inclusion, transforming into CeAlO<sub>3</sub>, while [Ce] replaces the Mg element in the MgO·Al<sub>2</sub>O<sub>3</sub> inclusion, evolving into Ce–Mg–Al–O, which further reacts to form CeAlO<sub>3</sub> and Ce<sub>2</sub>O<sub>2</sub>S. Over time, the number density of inclusions first increases then gradually diminishes with various refractories. MgO refractory minimizes the number density of inclusions to 53.05 mm<sup>−2</sup>. Moreover, the number of small size inclusions in MgO–MgO·Al<sub>2</sub>O<sub>3</sub> refractories is the largest, and inclusions less than 3 <i>μ</i>m account for 78.63 pct of the total number.</p>\",\"PeriodicalId\":18613,\"journal\":{\"name\":\"Metallurgical and Materials Transactions B\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11663-024-03174-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03174-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Refractory Crucibles on Inclusions in Ce-Containing High-Aluminum Steel
With the advancement of aerospace, military and related industries, there is a persistent escalation in the performance requirements for steel. According to the actual smelting conditions, this study focuses on Ce-containing high-aluminum steel and various refractories as its research subjects. A combination of laboratory experiments and thermodynamic calculations is employed to investigate and compare the evolution mechanism of oxide inclusions in molten steel. The use of Al2O3 refractory results in an increase in [Al] content, whereas both MgO refractory and MgO–MgO·Al2O3 refractory lead to a decrease in [Al] content. Additionally, following the utilization of MgO refractory and MgO–MgO·Al2O3 refractory, the molten steel exhibits the higher [Ce] content than when Al2O3 refractory are employed (t = 30 minutes). Before the introduction of Ce element, the principal oxide inclusions in Al2O3 refractory and MgO-containing refractory are Al2O3 and MgO·Al2O3 inclusion, respectively. After adding cerium-aluminum alloy, [Ce] in the molten steel replaces the element of Al in the Al2O3 inclusion, transforming into CeAlO3, while [Ce] replaces the Mg element in the MgO·Al2O3 inclusion, evolving into Ce–Mg–Al–O, which further reacts to form CeAlO3 and Ce2O2S. Over time, the number density of inclusions first increases then gradually diminishes with various refractories. MgO refractory minimizes the number density of inclusions to 53.05 mm−2. Moreover, the number of small size inclusions in MgO–MgO·Al2O3 refractories is the largest, and inclusions less than 3 μm account for 78.63 pct of the total number.