评估 21 种不同培养基对 11 个柑橘栽培品种幼枝再生的影响

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-24 DOI:10.1007/s11240-024-02785-7
Filipe Sathler Meira, Min Shao, Randall P. Niedz, James G. Thomson
{"title":"评估 21 种不同培养基对 11 个柑橘栽培品种幼枝再生的影响","authors":"Filipe Sathler Meira, Min Shao, Randall P. Niedz, James G. Thomson","doi":"10.1007/s11240-024-02785-7","DOIUrl":null,"url":null,"abstract":"<p><i>Citrus</i> is one of the most important global fruit crops, with oranges accounting for more than half the total production. <i>Citrus</i> can be genetically engineered for improved traits, but the process is severely limited by shoot regeneration rates, especially in commercial varieties. Although standardizing a transformation protocol is difficult due to genotype and season dependencies, use of an optimal mineral nutrient basal culture medium increases the success of recovering transgenic <i>Citrus</i> cells. The purpose of this study is to improve shoot regeneration from juvenile tissue in multiple <i>Citrus</i> genotypes. Explants of 11 <i>Citrus</i> cultivars were regenerated in 21 published media to determine the optimal media for each genotype. The number of shoots from juvenile tissue were counted 90 days after the explants were first cultured. The type of basal medium strongly affected the rates of shoot regeneration from <i>Citrus</i> juvenile tissue, and the effectiveness was negatively correlated with the level of ammonium. For each <i>Citrus</i> grouping, optimized media formulations were determined, and potential improvements were predicted. In general, medium R7100 appeared to be the most effective for regeneration of the <i>Citrus</i> genotypes tested.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of 21 different media on shoot regeneration in 11 cultivars of citrus using juvenile tissue\",\"authors\":\"Filipe Sathler Meira, Min Shao, Randall P. Niedz, James G. Thomson\",\"doi\":\"10.1007/s11240-024-02785-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Citrus</i> is one of the most important global fruit crops, with oranges accounting for more than half the total production. <i>Citrus</i> can be genetically engineered for improved traits, but the process is severely limited by shoot regeneration rates, especially in commercial varieties. Although standardizing a transformation protocol is difficult due to genotype and season dependencies, use of an optimal mineral nutrient basal culture medium increases the success of recovering transgenic <i>Citrus</i> cells. The purpose of this study is to improve shoot regeneration from juvenile tissue in multiple <i>Citrus</i> genotypes. Explants of 11 <i>Citrus</i> cultivars were regenerated in 21 published media to determine the optimal media for each genotype. The number of shoots from juvenile tissue were counted 90 days after the explants were first cultured. The type of basal medium strongly affected the rates of shoot regeneration from <i>Citrus</i> juvenile tissue, and the effectiveness was negatively correlated with the level of ammonium. For each <i>Citrus</i> grouping, optimized media formulations were determined, and potential improvements were predicted. In general, medium R7100 appeared to be the most effective for regeneration of the <i>Citrus</i> genotypes tested.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11240-024-02785-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02785-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

柑橘是全球最重要的水果作物之一,其中橙子占总产量的一半以上。柑橘可以通过基因工程改良性状,但这一过程受到嫩枝再生率的严重限制,尤其是在商业品种中。虽然由于基因型和季节的依赖性,很难实现转化方案的标准化,但使用最佳的矿物质营养基础培养基可提高柑橘细胞转基因的成功率。本研究的目的是改善多种柑橘基因型的幼枝组织再生。11 个柑橘栽培品种的外植体在 21 种已发表的培养基中再生,以确定每种基因型的最佳培养基。在首次培养外植体 90 天后,对幼体组织的芽数进行计数。基础培养基的类型对柑橘幼苗组织的嫩枝再生率有很大影响,其效果与铵的含量呈负相关。针对每个柑橘组别,确定了优化的培养基配方,并预测了潜在的改进方案。总体而言,R7100 培养基似乎对测试的柑橘基因型的再生最有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of 21 different media on shoot regeneration in 11 cultivars of citrus using juvenile tissue

Citrus is one of the most important global fruit crops, with oranges accounting for more than half the total production. Citrus can be genetically engineered for improved traits, but the process is severely limited by shoot regeneration rates, especially in commercial varieties. Although standardizing a transformation protocol is difficult due to genotype and season dependencies, use of an optimal mineral nutrient basal culture medium increases the success of recovering transgenic Citrus cells. The purpose of this study is to improve shoot regeneration from juvenile tissue in multiple Citrus genotypes. Explants of 11 Citrus cultivars were regenerated in 21 published media to determine the optimal media for each genotype. The number of shoots from juvenile tissue were counted 90 days after the explants were first cultured. The type of basal medium strongly affected the rates of shoot regeneration from Citrus juvenile tissue, and the effectiveness was negatively correlated with the level of ammonium. For each Citrus grouping, optimized media formulations were determined, and potential improvements were predicted. In general, medium R7100 appeared to be the most effective for regeneration of the Citrus genotypes tested.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1