用于 pH 值监测的凹槽栅 AlGaN/GaN HEMT:设计和灵敏度评估

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nanotechnology Pub Date : 2024-07-02 DOI:10.1109/TNANO.2024.3422181
Ritu Poonia;Lava Bhargava;Aasif Mohammad Bhat;C. Periasamy
{"title":"用于 pH 值监测的凹槽栅 AlGaN/GaN HEMT:设计和灵敏度评估","authors":"Ritu Poonia;Lava Bhargava;Aasif Mohammad Bhat;C. Periasamy","doi":"10.1109/TNANO.2024.3422181","DOIUrl":null,"url":null,"abstract":"This work proposed a recessed trench gate AlGaN/GaN HEMT for a potential of hydrogen ion (\n<inline-formula><tex-math>$\\rm H^+$</tex-math></inline-formula>\n) sensing by eliminating the need for a reference electrode. The proposed device performance has been optimized by simulating the device with the help of the ATLAS device simulation tool, considering the pH model. The sensing surface has been functionalized with APTES to improve the sensor's performance to activate the binding sites. The impact of pH solution on the device characteristic alters the threshold voltage sensitivity, drain current sensitivity, and signal-to-noise ratio. The effect of gate voltage in terms of maximum \n<inline-formula><tex-math>$\\rm g_{m}$</tex-math></inline-formula>\n has also been optimized for the maximum sensitivity of the device to the pH solution. The device linearity has been utilized for \n<inline-formula><tex-math>$\\rm VIP_{3}$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$\\rm IIP_{3}$</tex-math></inline-formula>\n, and \n<inline-formula><tex-math>$\\rm IMD_{4}$</tex-math></inline-formula>\n. The average threshold voltage sensitivity obtained is 160.56 mV/pH, higher than the Nernstian limit (59 mV/pH), and the current sensitivity obtained is 22.93 mA/mm.pH. The device's reliability has been optimized by addressing sensor output drift across various temperature and humidity conditions. These findings suggest that the proposed structure presents a promising alternative to current ion sensing techniques.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"778-785"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recessed Trench Gate AlGaN/GaN HEMT for pH Monitoring: Design and Sensitivity Evaluation\",\"authors\":\"Ritu Poonia;Lava Bhargava;Aasif Mohammad Bhat;C. Periasamy\",\"doi\":\"10.1109/TNANO.2024.3422181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposed a recessed trench gate AlGaN/GaN HEMT for a potential of hydrogen ion (\\n<inline-formula><tex-math>$\\\\rm H^+$</tex-math></inline-formula>\\n) sensing by eliminating the need for a reference electrode. The proposed device performance has been optimized by simulating the device with the help of the ATLAS device simulation tool, considering the pH model. The sensing surface has been functionalized with APTES to improve the sensor's performance to activate the binding sites. The impact of pH solution on the device characteristic alters the threshold voltage sensitivity, drain current sensitivity, and signal-to-noise ratio. The effect of gate voltage in terms of maximum \\n<inline-formula><tex-math>$\\\\rm g_{m}$</tex-math></inline-formula>\\n has also been optimized for the maximum sensitivity of the device to the pH solution. The device linearity has been utilized for \\n<inline-formula><tex-math>$\\\\rm VIP_{3}$</tex-math></inline-formula>\\n, \\n<inline-formula><tex-math>$\\\\rm IIP_{3}$</tex-math></inline-formula>\\n, and \\n<inline-formula><tex-math>$\\\\rm IMD_{4}$</tex-math></inline-formula>\\n. The average threshold voltage sensitivity obtained is 160.56 mV/pH, higher than the Nernstian limit (59 mV/pH), and the current sensitivity obtained is 22.93 mA/mm.pH. The device's reliability has been optimized by addressing sensor output drift across various temperature and humidity conditions. These findings suggest that the proposed structure presents a promising alternative to current ion sensing techniques.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"778-785\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10582475/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10582475/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一种凹槽栅AlGaN/GaN HEMT,通过消除对参比电极的需要,用于氢离子电位($\rm H^+$)传感。在考虑pH模型的情况下,利用ATLAS器件仿真工具对器件进行仿真,优化了所提出器件的性能。利用APTES对传感表面进行功能化,以提高传感器激活结合位点的性能。pH溶液对器件特性的影响会改变阈值电压灵敏度、漏极电流灵敏度和信噪比。对于器件对pH溶液的最大灵敏度,还优化了栅极电压在最大$\rm g_{m}$方面的影响。器件线性度已用于$\rm VIP_{3}$、$\rm IIP_{3}$和$\rm IMD_{4}$。获得的平均阈值电压灵敏度为160.56 mV/pH,高于Nernstian极限(59 mV/pH),获得的电流灵敏度为22.93 mA/mm.pH。通过解决传感器在各种温度和湿度条件下的输出漂移,优化了器件的可靠性。这些发现表明,所提出的结构是当前离子传感技术的一个有希望的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recessed Trench Gate AlGaN/GaN HEMT for pH Monitoring: Design and Sensitivity Evaluation
This work proposed a recessed trench gate AlGaN/GaN HEMT for a potential of hydrogen ion ( $\rm H^+$ ) sensing by eliminating the need for a reference electrode. The proposed device performance has been optimized by simulating the device with the help of the ATLAS device simulation tool, considering the pH model. The sensing surface has been functionalized with APTES to improve the sensor's performance to activate the binding sites. The impact of pH solution on the device characteristic alters the threshold voltage sensitivity, drain current sensitivity, and signal-to-noise ratio. The effect of gate voltage in terms of maximum $\rm g_{m}$ has also been optimized for the maximum sensitivity of the device to the pH solution. The device linearity has been utilized for $\rm VIP_{3}$ , $\rm IIP_{3}$ , and $\rm IMD_{4}$ . The average threshold voltage sensitivity obtained is 160.56 mV/pH, higher than the Nernstian limit (59 mV/pH), and the current sensitivity obtained is 22.93 mA/mm.pH. The device's reliability has been optimized by addressing sensor output drift across various temperature and humidity conditions. These findings suggest that the proposed structure presents a promising alternative to current ion sensing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
期刊最新文献
Improvement of Surface Roughness in SiO2 Thin Films via Deuterium Annealing at 300 °C On the Importance of the Metal Catalyst Layer to the Performance of CNT-Based Supercapacitor Electrodes Table of Contents Front Cover IEEE Transactions on Nanotechnology Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1