面向分子场耦合纳米计算原型的技术感知仿真

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nanotechnology Pub Date : 2024-06-18 DOI:10.1109/TNANO.2024.3415790
Federico Ravera;Yuri Ardesi;Gianluca Piccinini;Mariagrazia Graziano
{"title":"面向分子场耦合纳米计算原型的技术感知仿真","authors":"Federico Ravera;Yuri Ardesi;Gianluca Piccinini;Mariagrazia Graziano","doi":"10.1109/TNANO.2024.3415790","DOIUrl":null,"url":null,"abstract":"The molecular Field-Coupled Nanocomputing (molFCN) paradigm encodes digital information in the charge distribution of molecules. The information propagates through electrostatic coupling within molecules, permitting minimal power consumption. Although the promising results in the design of molFCN circuits, a prototype is missing. Therefore, this work moves toward molFCN fabrication by presenting a methodology combining Finite Element Modelling with the SCERPA tool, boosting the simulation accuracy by considering both molecule and device physics. First, this work analyzes nano-trench-based molFCN single-line wires, examining information propagation dependencies on the nano-trench geometries. Then, the analysis of nano-trench-based multi-line wires points out the primary prototype specification to achieve this advantageous molFCN solution. Finally, we demonstrate the nano-trench as a valuable solution to achieve the write-in mechanism. Overall, this paper paves the way for molFCN fabrication-aware simulations for future prototyping.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"521-528"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10561616","citationCount":"0","resultStr":"{\"title\":\"Technology-Aware Simulation for Prototyping Molecular Field-Coupled Nanocomputing\",\"authors\":\"Federico Ravera;Yuri Ardesi;Gianluca Piccinini;Mariagrazia Graziano\",\"doi\":\"10.1109/TNANO.2024.3415790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The molecular Field-Coupled Nanocomputing (molFCN) paradigm encodes digital information in the charge distribution of molecules. The information propagates through electrostatic coupling within molecules, permitting minimal power consumption. Although the promising results in the design of molFCN circuits, a prototype is missing. Therefore, this work moves toward molFCN fabrication by presenting a methodology combining Finite Element Modelling with the SCERPA tool, boosting the simulation accuracy by considering both molecule and device physics. First, this work analyzes nano-trench-based molFCN single-line wires, examining information propagation dependencies on the nano-trench geometries. Then, the analysis of nano-trench-based multi-line wires points out the primary prototype specification to achieve this advantageous molFCN solution. Finally, we demonstrate the nano-trench as a valuable solution to achieve the write-in mechanism. Overall, this paper paves the way for molFCN fabrication-aware simulations for future prototyping.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"521-528\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10561616\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10561616/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10561616/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

分子场耦合纳米计算(molFCN)模式在分子的电荷分布中编码数字信息。信息通过分子内的静电耦合传播,从而将功耗降至最低。尽管 molFCN 电路的设计取得了可喜的成果,但还缺少一个原型。因此,本研究提出了一种将有限元建模与 SCERPA 工具相结合的方法,通过同时考虑分子和器件的物理特性来提高模拟精度,从而推动 molFCN 的制造。首先,这项工作分析了基于纳米沟槽的 molFCN 单线,研究了信息传播对纳米沟槽几何形状的依赖性。然后,分析了基于纳米沟槽的多线导线,指出了实现这一优势 molFCN 解决方案的主要原型规格。最后,我们证明了纳米沟槽是实现写入机制的重要解决方案。总之,本文为未来原型设计中的 molFCN 制造感知模拟铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Technology-Aware Simulation for Prototyping Molecular Field-Coupled Nanocomputing
The molecular Field-Coupled Nanocomputing (molFCN) paradigm encodes digital information in the charge distribution of molecules. The information propagates through electrostatic coupling within molecules, permitting minimal power consumption. Although the promising results in the design of molFCN circuits, a prototype is missing. Therefore, this work moves toward molFCN fabrication by presenting a methodology combining Finite Element Modelling with the SCERPA tool, boosting the simulation accuracy by considering both molecule and device physics. First, this work analyzes nano-trench-based molFCN single-line wires, examining information propagation dependencies on the nano-trench geometries. Then, the analysis of nano-trench-based multi-line wires points out the primary prototype specification to achieve this advantageous molFCN solution. Finally, we demonstrate the nano-trench as a valuable solution to achieve the write-in mechanism. Overall, this paper paves the way for molFCN fabrication-aware simulations for future prototyping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
期刊最新文献
High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks Design of a Graphene Based Terahertz Perfect Metamaterial Absorber With Multiple Sensing Performance Impact of Electron and Hole Trap Profiles in BE-TOX on Retention Characteristics of 3D NAND Flash Memory Full 3-D Monte Carlo Simulation of Coupled Electron-Phonon Transport: Self-Heating in a Nanoscale FinFET Experimental Investigations and Characterization of Surfactant Activated Mixed Metal Oxide (MMO) Nanomaterial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1