全介质元表面中的高 Q 磁环偶极共振

IF 5.4 1区 物理与天体物理 Q1 OPTICS APL Photonics Pub Date : 2024-07-02 DOI:10.1063/5.0208936
Ying Zhang, Lulu Wang, Haoxuan He, Hong Duan, Jing Huang, Chenggui Gao, Shaojun You, Lujun Huang, Andrey E. Miroshnichenko, Chaobiao Zhou
{"title":"全介质元表面中的高 Q 磁环偶极共振","authors":"Ying Zhang, Lulu Wang, Haoxuan He, Hong Duan, Jing Huang, Chenggui Gao, Shaojun You, Lujun Huang, Andrey E. Miroshnichenko, Chaobiao Zhou","doi":"10.1063/5.0208936","DOIUrl":null,"url":null,"abstract":"High quality (Q) factor toroidal dipole (TD) resonances have played an increasingly important role in enhancing light–matter interactions. Interestingly, TDs share a similar far-field distribution as the conventional electric/magnetic dipoles but have distinct near-field profiles from them. While most reported works focused on the electric TD, magnetic TDs (MTDs), particularly high-Q MTD, have not been fully explored yet. Here, we successfully realized a high-Q MTD by effectively harnessing the ultrahigh Q-factor guided mode resonances supported in an all-dielectric metasurface, that is, changing the interspacing between silicon nanobar dimers. Other salient properties include the stable resonance wavelength but a precisely tailored Q-factor by interspacing distance. A multipole decomposition analysis indicates that this mode is dominated by the MTD, where the electric fields are mainly confined within the dielectric nanostructures, while the induced magnetic dipole loops are connected head-to-tail. Finally, we experimentally demonstrated such high-Q MTD resonance by fabricating a series of silicon metasurfaces and measuring their transmission spectra. The MTD resonance is characterized by a sharp Fano resonance in the transmission spectrum. The maximum measured Q-factor is up to 5079. Our results provide useful guidance for realizing high-Q MTD and may find exciting applications in boosting light–matter interactions.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"44 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Q magnetic toroidal dipole resonance in all-dielectric metasurfaces\",\"authors\":\"Ying Zhang, Lulu Wang, Haoxuan He, Hong Duan, Jing Huang, Chenggui Gao, Shaojun You, Lujun Huang, Andrey E. Miroshnichenko, Chaobiao Zhou\",\"doi\":\"10.1063/5.0208936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High quality (Q) factor toroidal dipole (TD) resonances have played an increasingly important role in enhancing light–matter interactions. Interestingly, TDs share a similar far-field distribution as the conventional electric/magnetic dipoles but have distinct near-field profiles from them. While most reported works focused on the electric TD, magnetic TDs (MTDs), particularly high-Q MTD, have not been fully explored yet. Here, we successfully realized a high-Q MTD by effectively harnessing the ultrahigh Q-factor guided mode resonances supported in an all-dielectric metasurface, that is, changing the interspacing between silicon nanobar dimers. Other salient properties include the stable resonance wavelength but a precisely tailored Q-factor by interspacing distance. A multipole decomposition analysis indicates that this mode is dominated by the MTD, where the electric fields are mainly confined within the dielectric nanostructures, while the induced magnetic dipole loops are connected head-to-tail. Finally, we experimentally demonstrated such high-Q MTD resonance by fabricating a series of silicon metasurfaces and measuring their transmission spectra. The MTD resonance is characterized by a sharp Fano resonance in the transmission spectrum. The maximum measured Q-factor is up to 5079. Our results provide useful guidance for realizing high-Q MTD and may find exciting applications in boosting light–matter interactions.\",\"PeriodicalId\":8198,\"journal\":{\"name\":\"APL Photonics\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0208936\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0208936","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

高质量(Q)因子环状偶极子(TD)共振在增强光物质相互作用方面发挥着越来越重要的作用。有趣的是,TD 与传统的电偶极/磁偶极有着相似的远场分布,但却有着不同的近场分布。虽然大多数报道都集中在电TD上,但磁TD(MTD),尤其是高Q MTD,尚未得到充分探索。在这里,我们通过有效利用全介质元表面支持的超高 Q 因子导模共振,即改变硅纳米棒二聚体之间的间隔,成功实现了高 Q 值 MTD。其他突出特性包括共振波长稳定,但Q因子可通过间隔距离精确定制。多极分解分析表明,该模式由 MTD 主导,其中电场主要局限在介电纳米结构内,而诱导磁偶极环则头尾相连。最后,我们通过制作一系列硅元表面并测量其透射光谱,在实验中证明了这种高 Q 值 MTD 共振。MTD 共振的特点是透射光谱中存在尖锐的法诺共振。测得的最大 Q 因子高达 5079。我们的研究结果为实现高 Q 值 MTD 提供了有用的指导,并可能在促进光物质相互作用方面找到令人兴奋的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Q magnetic toroidal dipole resonance in all-dielectric metasurfaces
High quality (Q) factor toroidal dipole (TD) resonances have played an increasingly important role in enhancing light–matter interactions. Interestingly, TDs share a similar far-field distribution as the conventional electric/magnetic dipoles but have distinct near-field profiles from them. While most reported works focused on the electric TD, magnetic TDs (MTDs), particularly high-Q MTD, have not been fully explored yet. Here, we successfully realized a high-Q MTD by effectively harnessing the ultrahigh Q-factor guided mode resonances supported in an all-dielectric metasurface, that is, changing the interspacing between silicon nanobar dimers. Other salient properties include the stable resonance wavelength but a precisely tailored Q-factor by interspacing distance. A multipole decomposition analysis indicates that this mode is dominated by the MTD, where the electric fields are mainly confined within the dielectric nanostructures, while the induced magnetic dipole loops are connected head-to-tail. Finally, we experimentally demonstrated such high-Q MTD resonance by fabricating a series of silicon metasurfaces and measuring their transmission spectra. The MTD resonance is characterized by a sharp Fano resonance in the transmission spectrum. The maximum measured Q-factor is up to 5079. Our results provide useful guidance for realizing high-Q MTD and may find exciting applications in boosting light–matter interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
期刊最新文献
Impact of polarization pulling on optimal spectrometer design for stimulated Brillouin scattering microscopy. Advancements in optical biosensing techniques: From fundamentals to future prospects The manipulation of spin angular momentum for binary circular Airy beam during propagation A tutorial on optical photothermal infrared (O-PTIR) microscopy Beyond memory-effect matrix-based imaging in scattering media by acousto-optic gating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1