使用新型 Cu35Ni35Cr10Fe10Sn10 高熵合金填料进行金刚石钎焊

IF 3.5 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Journal of the American Ceramic Society Pub Date : 2024-06-29 DOI:10.1111/jace.19984
Haifeng Wei, Hui Zhang, Dong Xu, Weihuo Li, Qiang Hu, Sheng Guo
{"title":"使用新型 Cu35Ni35Cr10Fe10Sn10 高熵合金填料进行金刚石钎焊","authors":"Haifeng Wei,&nbsp;Hui Zhang,&nbsp;Dong Xu,&nbsp;Weihuo Li,&nbsp;Qiang Hu,&nbsp;Sheng Guo","doi":"10.1111/jace.19984","DOIUrl":null,"url":null,"abstract":"<p>A novel Cu<sub>35</sub>Ni<sub>35</sub>Cr<sub>10</sub>Fe<sub>10</sub>Sn<sub>10</sub> high-entropy alloy (HEA) filler with a relatively low melting point (935°C) was designed for brazing diamonds, and its technical advantages over conventional NiCr-based fillers, that is, favorable wettability, high bonding strength, low thermal damage, and high mechanical performance, were convincingly demonstrated. The newly developed HEA filler had a contact angle of only 11° on the graphite (energetically close to diamond) surface and it could braze diamonds at 1000°C, much lower than the brazing temperature of conventional NiCr-based fillers. Consequently, the brazed diamond exhibited greatly decreased surface thermal damage, higher fracture strength, and better wear performance. The solidified microstructure of the HEA filler contained three solid solution phases, that is, FeCrNi-rich, CuNi-rich, and CuSnNi-rich phases that were formed through the liquid phase separation process, plus a minor phase of nanosized FeCr-rich precipitates. The reaction products at the HEA filler/diamond interface were simply an inner Cr<sub>3</sub>C<sub>2</sub> layer and an outer Cr<sub>7</sub>C<sub>3</sub> layer, without other complex brittle compounds that are commonly seen in NiCr-based fillers after diamond brazing. Apparently, the HEA filler reacted more sufficiently with diamonds, which contributed to improve the bonding strength and wear resistance of the brazed diamond. This work provided a new application scenario for HEAs as promising filler materials for brazing diamonds.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diamonds brazing with a novel Cu35Ni35Cr10Fe10Sn10 high-entropy alloy filler\",\"authors\":\"Haifeng Wei,&nbsp;Hui Zhang,&nbsp;Dong Xu,&nbsp;Weihuo Li,&nbsp;Qiang Hu,&nbsp;Sheng Guo\",\"doi\":\"10.1111/jace.19984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel Cu<sub>35</sub>Ni<sub>35</sub>Cr<sub>10</sub>Fe<sub>10</sub>Sn<sub>10</sub> high-entropy alloy (HEA) filler with a relatively low melting point (935°C) was designed for brazing diamonds, and its technical advantages over conventional NiCr-based fillers, that is, favorable wettability, high bonding strength, low thermal damage, and high mechanical performance, were convincingly demonstrated. The newly developed HEA filler had a contact angle of only 11° on the graphite (energetically close to diamond) surface and it could braze diamonds at 1000°C, much lower than the brazing temperature of conventional NiCr-based fillers. Consequently, the brazed diamond exhibited greatly decreased surface thermal damage, higher fracture strength, and better wear performance. The solidified microstructure of the HEA filler contained three solid solution phases, that is, FeCrNi-rich, CuNi-rich, and CuSnNi-rich phases that were formed through the liquid phase separation process, plus a minor phase of nanosized FeCr-rich precipitates. The reaction products at the HEA filler/diamond interface were simply an inner Cr<sub>3</sub>C<sub>2</sub> layer and an outer Cr<sub>7</sub>C<sub>3</sub> layer, without other complex brittle compounds that are commonly seen in NiCr-based fillers after diamond brazing. Apparently, the HEA filler reacted more sufficiently with diamonds, which contributed to improve the bonding strength and wear resistance of the brazed diamond. This work provided a new application scenario for HEAs as promising filler materials for brazing diamonds.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.19984\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.19984","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

研究人员设计了一种熔点相对较低(935°C)的新型铜35镍35铬10铁10锡10高熵合金(HEA)填料,用于钎焊金刚石,与传统的镍铬基填料相比,该填料具有良好的润湿性、高结合强度、低热损伤和高机械性能等技术优势。新开发的 HEA 填料在石墨(能量接近金刚石)表面的接触角仅为 11°,可在 1000°C 下钎焊金刚石,远低于传统镍铬基填料的钎焊温度。因此,钎焊金刚石的表面热损伤大大减少,断裂强度更高,磨损性能更好。HEA 填料的固化微观结构包含三个固溶相,即通过液相分离过程形成的富 FeCrNi- 相、富 CuNi- 相和富 CuSnNi- 相,以及一个次要的纳米级富 FeCr 沉淀相。HEA 填料/金刚石界面上的反应产物仅为内层 Cr3C2 和外层 Cr7C3,没有其他复杂的脆性化合物,而这些化合物通常在金刚石钎焊后的镍铬基填料中出现。显然,HEA 填料与金刚石的反应更充分,有助于提高钎焊金刚石的结合强度和耐磨性。这项研究为 HEA 作为金刚石钎焊填充材料提供了新的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diamonds brazing with a novel Cu35Ni35Cr10Fe10Sn10 high-entropy alloy filler

A novel Cu35Ni35Cr10Fe10Sn10 high-entropy alloy (HEA) filler with a relatively low melting point (935°C) was designed for brazing diamonds, and its technical advantages over conventional NiCr-based fillers, that is, favorable wettability, high bonding strength, low thermal damage, and high mechanical performance, were convincingly demonstrated. The newly developed HEA filler had a contact angle of only 11° on the graphite (energetically close to diamond) surface and it could braze diamonds at 1000°C, much lower than the brazing temperature of conventional NiCr-based fillers. Consequently, the brazed diamond exhibited greatly decreased surface thermal damage, higher fracture strength, and better wear performance. The solidified microstructure of the HEA filler contained three solid solution phases, that is, FeCrNi-rich, CuNi-rich, and CuSnNi-rich phases that were formed through the liquid phase separation process, plus a minor phase of nanosized FeCr-rich precipitates. The reaction products at the HEA filler/diamond interface were simply an inner Cr3C2 layer and an outer Cr7C3 layer, without other complex brittle compounds that are commonly seen in NiCr-based fillers after diamond brazing. Apparently, the HEA filler reacted more sufficiently with diamonds, which contributed to improve the bonding strength and wear resistance of the brazed diamond. This work provided a new application scenario for HEAs as promising filler materials for brazing diamonds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the American Ceramic Society
Journal of the American Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
7.50
自引率
7.70%
发文量
590
审稿时长
2.1 months
期刊介绍: The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials. Papers on fundamental ceramic and glass science are welcome including those in the following areas: Enabling materials for grand challenges[...] Materials design, selection, synthesis and processing methods[...] Characterization of compositions, structures, defects, and properties along with new methods [...] Mechanisms, Theory, Modeling, and Simulation[...] JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.
期刊最新文献
Modulation of solid solution in MgxMn1−xAl2xFe2(1−x)O4 spinel ceramics for multifunctional devices Molecular dynamics study on structural characteristics of amorphous C-S-H with different Ca/Si ratios Fabrication of BiScO3–PbTiO3/epoxy 1–3 piezoelectric composites for high-temperature transducer applications Correction to: Fabrication of vanadium telluride anchored on carbon nanotubes nanocomposite for overall water splitting Incorporation of specific defects through ion bombardment for better ferroelectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1