Hassanien Gomaa, Cuihua An, Qibo Deng, Hamud A. Altaleb, Sobhi M. Gomha, Tariq Z. Abolibda, Mohamed A. Shenashen, Ning Hu
{"title":"一种用于高效协同降解刚果红的混合介孔片状镍钴氧化物@P,S,N-掺杂碳纳米光催化剂:统计、DFT 和机理研究","authors":"Hassanien Gomaa, Cuihua An, Qibo Deng, Hamud A. Altaleb, Sobhi M. Gomha, Tariq Z. Abolibda, Mohamed A. Shenashen, Ning Hu","doi":"10.1016/j.jiec.2024.06.023","DOIUrl":null,"url":null,"abstract":"Here, a hybrid mesoporous sheets-like nano-catalyst was used to investigate the degradation of Congo Red (CR) dye. The photocatalytic efficiency of CR dye degradation was evaluated using a variety of mesoporous hybrid materials containing P,S,N-doped carbon (PC1), CoO@P,S,N-doped carbon (PC2), NiO@P,S,N-doped carbon (PC3), and NiCoO@P,S,N-doped carbon (PC4) sheet-like. The results indicated that the PC4 nano-catalyst exhibited exceptional efficacy in the photocatalytic degradation of CR dye, achieving a degradation efficiency exceeding 99 %. The results also showed that PC4 possessed a band gap of 1.7 eV. To formulate an effective photodegradation system, Analysis of Variance (ANOVA), a valuable statistical method, was employed to examine how varying pH, PC dose, and irradiation time can improve the photodegradation performance. Influential key parameters, including pH, PC dose, irradiation time, and CR concentration, were optimized through response surface methodology applying a four-factor, three-level Box-Behnken design (BBD). To achieve a 99 % decolorization of CR, the optimum conditions were determined to be pH 3.8, PC dose at 14 mg, irradiation time of 10.2 min, and CR concentration of 14.3 ppm. Kinetic models demonstrated that CR degradation followed pseudo-first-order kinetics. Moreover, band gap comparisons, scavenger analysis, and density functional theory (DFT) were used to discuss the CR degradation mechanism.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"166 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid mesoporous sheet-like NiCo2O4@P,S,N-doped carbon nano-photocatalyst for efficient synergistic degradation of Congo red: Statistical, DFT and mechanism studies\",\"authors\":\"Hassanien Gomaa, Cuihua An, Qibo Deng, Hamud A. Altaleb, Sobhi M. Gomha, Tariq Z. Abolibda, Mohamed A. Shenashen, Ning Hu\",\"doi\":\"10.1016/j.jiec.2024.06.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, a hybrid mesoporous sheets-like nano-catalyst was used to investigate the degradation of Congo Red (CR) dye. The photocatalytic efficiency of CR dye degradation was evaluated using a variety of mesoporous hybrid materials containing P,S,N-doped carbon (PC1), CoO@P,S,N-doped carbon (PC2), NiO@P,S,N-doped carbon (PC3), and NiCoO@P,S,N-doped carbon (PC4) sheet-like. The results indicated that the PC4 nano-catalyst exhibited exceptional efficacy in the photocatalytic degradation of CR dye, achieving a degradation efficiency exceeding 99 %. The results also showed that PC4 possessed a band gap of 1.7 eV. To formulate an effective photodegradation system, Analysis of Variance (ANOVA), a valuable statistical method, was employed to examine how varying pH, PC dose, and irradiation time can improve the photodegradation performance. Influential key parameters, including pH, PC dose, irradiation time, and CR concentration, were optimized through response surface methodology applying a four-factor, three-level Box-Behnken design (BBD). To achieve a 99 % decolorization of CR, the optimum conditions were determined to be pH 3.8, PC dose at 14 mg, irradiation time of 10.2 min, and CR concentration of 14.3 ppm. Kinetic models demonstrated that CR degradation followed pseudo-first-order kinetics. Moreover, band gap comparisons, scavenger analysis, and density functional theory (DFT) were used to discuss the CR degradation mechanism.\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"166 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jiec.2024.06.023\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.06.023","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A hybrid mesoporous sheet-like NiCo2O4@P,S,N-doped carbon nano-photocatalyst for efficient synergistic degradation of Congo red: Statistical, DFT and mechanism studies
Here, a hybrid mesoporous sheets-like nano-catalyst was used to investigate the degradation of Congo Red (CR) dye. The photocatalytic efficiency of CR dye degradation was evaluated using a variety of mesoporous hybrid materials containing P,S,N-doped carbon (PC1), CoO@P,S,N-doped carbon (PC2), NiO@P,S,N-doped carbon (PC3), and NiCoO@P,S,N-doped carbon (PC4) sheet-like. The results indicated that the PC4 nano-catalyst exhibited exceptional efficacy in the photocatalytic degradation of CR dye, achieving a degradation efficiency exceeding 99 %. The results also showed that PC4 possessed a band gap of 1.7 eV. To formulate an effective photodegradation system, Analysis of Variance (ANOVA), a valuable statistical method, was employed to examine how varying pH, PC dose, and irradiation time can improve the photodegradation performance. Influential key parameters, including pH, PC dose, irradiation time, and CR concentration, were optimized through response surface methodology applying a four-factor, three-level Box-Behnken design (BBD). To achieve a 99 % decolorization of CR, the optimum conditions were determined to be pH 3.8, PC dose at 14 mg, irradiation time of 10.2 min, and CR concentration of 14.3 ppm. Kinetic models demonstrated that CR degradation followed pseudo-first-order kinetics. Moreover, band gap comparisons, scavenger analysis, and density functional theory (DFT) were used to discuss the CR degradation mechanism.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.