利用协方差动力学推断基因调控网络

Yue Wang, Peng Zheng, Yu-Chen Cheng, Zikun Wang, Aleksandr Aravkin
{"title":"利用协方差动力学推断基因调控网络","authors":"Yue Wang, Peng Zheng, Yu-Chen Cheng, Zikun Wang, Aleksandr Aravkin","doi":"arxiv-2407.00754","DOIUrl":null,"url":null,"abstract":"Determining gene regulatory network (GRN) structure is a central problem in\nbiology, with a variety of inference methods available for different types of\ndata. For a widely prevalent and challenging use case, namely single-cell gene\nexpression data measured after intervention at multiple time points with\nunknown joint distributions, there is only one known specifically developed\nmethod, which does not fully utilize the rich information contained in this\ndata type. We develop an inference method for the GRN in this case, netWork\ninfErence by covariaNce DYnamics, dubbed WENDY. The core idea of WENDY is to\nmodel the dynamics of the covariance matrix, and solve this dynamics as an\noptimization problem to determine the regulatory relationships. To evaluate its\neffectiveness, we compare WENDY with other inference methods using synthetic\ndata and experimental data. Our results demonstrate that WENDY performs well\nacross different data sets.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene Regulatory Network Inference with Covariance Dynamics\",\"authors\":\"Yue Wang, Peng Zheng, Yu-Chen Cheng, Zikun Wang, Aleksandr Aravkin\",\"doi\":\"arxiv-2407.00754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining gene regulatory network (GRN) structure is a central problem in\\nbiology, with a variety of inference methods available for different types of\\ndata. For a widely prevalent and challenging use case, namely single-cell gene\\nexpression data measured after intervention at multiple time points with\\nunknown joint distributions, there is only one known specifically developed\\nmethod, which does not fully utilize the rich information contained in this\\ndata type. We develop an inference method for the GRN in this case, netWork\\ninfErence by covariaNce DYnamics, dubbed WENDY. The core idea of WENDY is to\\nmodel the dynamics of the covariance matrix, and solve this dynamics as an\\noptimization problem to determine the regulatory relationships. To evaluate its\\neffectiveness, we compare WENDY with other inference methods using synthetic\\ndata and experimental data. Our results demonstrate that WENDY performs well\\nacross different data sets.\",\"PeriodicalId\":501325,\"journal\":{\"name\":\"arXiv - QuanBio - Molecular Networks\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Molecular Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.00754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定基因调控网络(GRN)结构是生物学的一个核心问题,针对不同类型的数据有多种推断方法。对于一种广泛流行且极具挑战性的使用情况,即在多个时间点进行干预后测量的、联合分布未知的单细胞基因表达数据,目前只有一种已知的专门开发的方法,它没有充分利用这种数据类型所包含的丰富信息。在这种情况下,我们为 GRN 开发了一种推断方法,即通过协方差 DYnamics 进行网络工作推断(netWorkinfErence by covariaNce DYnamics),并将其命名为 WENDY。WENDY 的核心思想是对协方差矩阵的动态进行建模,并将此动态作为一个优化问题来解决,以确定调控关系。为了评估其有效性,我们使用合成数据和实验数据将 WENDY 与其他推断方法进行了比较。结果表明,WENDY 在不同的数据集上都表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene Regulatory Network Inference with Covariance Dynamics
Determining gene regulatory network (GRN) structure is a central problem in biology, with a variety of inference methods available for different types of data. For a widely prevalent and challenging use case, namely single-cell gene expression data measured after intervention at multiple time points with unknown joint distributions, there is only one known specifically developed method, which does not fully utilize the rich information contained in this data type. We develop an inference method for the GRN in this case, netWork infErence by covariaNce DYnamics, dubbed WENDY. The core idea of WENDY is to model the dynamics of the covariance matrix, and solve this dynamics as an optimization problem to determine the regulatory relationships. To evaluate its effectiveness, we compare WENDY with other inference methods using synthetic data and experimental data. Our results demonstrate that WENDY performs well across different data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable control to mitigate loads in CRISPRa networks Some bounds on positive equilibria in mass action networks Non-explosivity of endotactic stochastic reaction systems Limits on the computational expressivity of non-equilibrium biophysical processes When lowering temperature, the in vivo circadian clock in cyanobacteria follows and surpasses the in vitro protein clock trough the Hopf bifurcation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1