{"title":"SHA:数据库系统的 QoS 感知软件和硬件自动调整","authors":"Jin Li, Quan Chen, Xiao-Xin Tang, Min-Yi Guo","doi":"10.1007/s11390-022-1751-3","DOIUrl":null,"url":null,"abstract":"<p>While databases are widely-used in commercial user-facing services that have stringent quality-of-service (QoS) requirement, it is crucial to ensure their good performance and minimize the hardware usage at the same time. Our investigation shows that the optimal DBMS (database management system) software configuration varies for different user request patterns (i.e., workloads) and hardware configurations. It is challenging to identify the optimal software and hardware configurations for a database workload, because DBMSs have hundreds of tunable knobs, the effect of tuning a knob depends on other knobs, and the dependency relationship changes under different hardware configurations. In this paper, we propose SHA, a software and hardware auto-tuning system for DBMSs. SHA is comprised of a scaling-based performance predictor, a reinforcement learning (RL) based software tuner, and a QoS-aware resource reallocator. The performance predictor predicts its optimal performance with different hardware configurations and identifies the minimum amount of resources for satisfying its performance requirement. The software tuner fine-tunes the DBMS software knobs to optimize the performance of the workload. The resource reallocator assigns the saved resources to other applications to improve resource utilization without incurring QoS violation of the database workload. Experimental results show that SHA improves the performance of database workloads by 9.9% on average compared with a state-of-the-art solution when the hardware configuration is fixed, and improves 43.2% of resource utilization while ensuring the QoS.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"200 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SHA: QoS-Aware Software and Hardware Auto-Tuning for Database Systems\",\"authors\":\"Jin Li, Quan Chen, Xiao-Xin Tang, Min-Yi Guo\",\"doi\":\"10.1007/s11390-022-1751-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While databases are widely-used in commercial user-facing services that have stringent quality-of-service (QoS) requirement, it is crucial to ensure their good performance and minimize the hardware usage at the same time. Our investigation shows that the optimal DBMS (database management system) software configuration varies for different user request patterns (i.e., workloads) and hardware configurations. It is challenging to identify the optimal software and hardware configurations for a database workload, because DBMSs have hundreds of tunable knobs, the effect of tuning a knob depends on other knobs, and the dependency relationship changes under different hardware configurations. In this paper, we propose SHA, a software and hardware auto-tuning system for DBMSs. SHA is comprised of a scaling-based performance predictor, a reinforcement learning (RL) based software tuner, and a QoS-aware resource reallocator. The performance predictor predicts its optimal performance with different hardware configurations and identifies the minimum amount of resources for satisfying its performance requirement. The software tuner fine-tunes the DBMS software knobs to optimize the performance of the workload. The resource reallocator assigns the saved resources to other applications to improve resource utilization without incurring QoS violation of the database workload. Experimental results show that SHA improves the performance of database workloads by 9.9% on average compared with a state-of-the-art solution when the hardware configuration is fixed, and improves 43.2% of resource utilization while ensuring the QoS.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"200 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-022-1751-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-022-1751-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
SHA: QoS-Aware Software and Hardware Auto-Tuning for Database Systems
While databases are widely-used in commercial user-facing services that have stringent quality-of-service (QoS) requirement, it is crucial to ensure their good performance and minimize the hardware usage at the same time. Our investigation shows that the optimal DBMS (database management system) software configuration varies for different user request patterns (i.e., workloads) and hardware configurations. It is challenging to identify the optimal software and hardware configurations for a database workload, because DBMSs have hundreds of tunable knobs, the effect of tuning a knob depends on other knobs, and the dependency relationship changes under different hardware configurations. In this paper, we propose SHA, a software and hardware auto-tuning system for DBMSs. SHA is comprised of a scaling-based performance predictor, a reinforcement learning (RL) based software tuner, and a QoS-aware resource reallocator. The performance predictor predicts its optimal performance with different hardware configurations and identifies the minimum amount of resources for satisfying its performance requirement. The software tuner fine-tunes the DBMS software knobs to optimize the performance of the workload. The resource reallocator assigns the saved resources to other applications to improve resource utilization without incurring QoS violation of the database workload. Experimental results show that SHA improves the performance of database workloads by 9.9% on average compared with a state-of-the-art solution when the hardware configuration is fixed, and improves 43.2% of resource utilization while ensuring the QoS.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas