{"title":"基于 MEMS 激光雷达的自动驾驶三维点云数据聚类研究","authors":"Weikang Yang, Siwei Dong, Dagang Li","doi":"10.1007/s12239-024-00112-9","DOIUrl":null,"url":null,"abstract":"<p>In the field of autonomous driving, the perception of the environment plays a crucial role, serving as a fundamental component. Accurate and precise environmental detection is vital in providing detailed information about obstacles for the control module of autonomous vehicles. MEMS LiDAR, as a prevalent sensor for acquiring obstacle positions, offers high accuracy in data acquisition by leveraging its dense point cloud information. However, a characteristic of MEMS LiDAR is the decrease in cloud density as the distance increases. Failure to consider this issue can lead to problems such as merging or splitting of obstacles during the clustering process. Furthermore, relying solely on a two-dimensional grid-based approach poses challenges when it comes to detecting overhanging obstacles. To overcome these challenges, we propose a method that tackles the problems of undistinguishable adjacent obstacles, splitting of distant obstacles, and the detection of overhanging structures. First, we apply ground segmentation techniques to remove ground-based points from the point cloud data. This step helps in isolating the obstacles of interest and improving the accuracy of subsequent analysis. Next, we create a three-dimensional grid map and determine the occupancy of each grid cell. To optimize the problem of distant obstacle splitting, we employ a dilation algorithm to expand the occupancy of the grid cells. Subsequently, we convert the three-dimensional grid into a two-dimensional representation and evaluate the occupancy of each cell in the resulting grid based on the height direction occupancy. Furthermore, we employ noise removal techniques to enhance the quality of the data. Finally, we utilize the DBSCAN algorithm, which incorporates an adaptive radius and eight-neighbor cells clustering algorithm, to perform obstacle clustering operations. Comparing our proposed method with the traditional DBSCAN algorithm, we observed that our method achieved a 7.6% increase in detection accuracy, while reducing calculation time by 16.2%.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Research of 3D Point Cloud Data Clustering Based on MEMS Lidar for Autonomous Driving\",\"authors\":\"Weikang Yang, Siwei Dong, Dagang Li\",\"doi\":\"10.1007/s12239-024-00112-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the field of autonomous driving, the perception of the environment plays a crucial role, serving as a fundamental component. Accurate and precise environmental detection is vital in providing detailed information about obstacles for the control module of autonomous vehicles. MEMS LiDAR, as a prevalent sensor for acquiring obstacle positions, offers high accuracy in data acquisition by leveraging its dense point cloud information. However, a characteristic of MEMS LiDAR is the decrease in cloud density as the distance increases. Failure to consider this issue can lead to problems such as merging or splitting of obstacles during the clustering process. Furthermore, relying solely on a two-dimensional grid-based approach poses challenges when it comes to detecting overhanging obstacles. To overcome these challenges, we propose a method that tackles the problems of undistinguishable adjacent obstacles, splitting of distant obstacles, and the detection of overhanging structures. First, we apply ground segmentation techniques to remove ground-based points from the point cloud data. This step helps in isolating the obstacles of interest and improving the accuracy of subsequent analysis. Next, we create a three-dimensional grid map and determine the occupancy of each grid cell. To optimize the problem of distant obstacle splitting, we employ a dilation algorithm to expand the occupancy of the grid cells. Subsequently, we convert the three-dimensional grid into a two-dimensional representation and evaluate the occupancy of each cell in the resulting grid based on the height direction occupancy. Furthermore, we employ noise removal techniques to enhance the quality of the data. Finally, we utilize the DBSCAN algorithm, which incorporates an adaptive radius and eight-neighbor cells clustering algorithm, to perform obstacle clustering operations. Comparing our proposed method with the traditional DBSCAN algorithm, we observed that our method achieved a 7.6% increase in detection accuracy, while reducing calculation time by 16.2%.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00112-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00112-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Research of 3D Point Cloud Data Clustering Based on MEMS Lidar for Autonomous Driving
In the field of autonomous driving, the perception of the environment plays a crucial role, serving as a fundamental component. Accurate and precise environmental detection is vital in providing detailed information about obstacles for the control module of autonomous vehicles. MEMS LiDAR, as a prevalent sensor for acquiring obstacle positions, offers high accuracy in data acquisition by leveraging its dense point cloud information. However, a characteristic of MEMS LiDAR is the decrease in cloud density as the distance increases. Failure to consider this issue can lead to problems such as merging or splitting of obstacles during the clustering process. Furthermore, relying solely on a two-dimensional grid-based approach poses challenges when it comes to detecting overhanging obstacles. To overcome these challenges, we propose a method that tackles the problems of undistinguishable adjacent obstacles, splitting of distant obstacles, and the detection of overhanging structures. First, we apply ground segmentation techniques to remove ground-based points from the point cloud data. This step helps in isolating the obstacles of interest and improving the accuracy of subsequent analysis. Next, we create a three-dimensional grid map and determine the occupancy of each grid cell. To optimize the problem of distant obstacle splitting, we employ a dilation algorithm to expand the occupancy of the grid cells. Subsequently, we convert the three-dimensional grid into a two-dimensional representation and evaluate the occupancy of each cell in the resulting grid based on the height direction occupancy. Furthermore, we employ noise removal techniques to enhance the quality of the data. Finally, we utilize the DBSCAN algorithm, which incorporates an adaptive radius and eight-neighbor cells clustering algorithm, to perform obstacle clustering operations. Comparing our proposed method with the traditional DBSCAN algorithm, we observed that our method achieved a 7.6% increase in detection accuracy, while reducing calculation time by 16.2%.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.