长短期记忆网络在台湾西海岸台风海浪预报中的应用

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-07-02 DOI:10.3390/s24134305
Wei-Ting Chao, Ting-Jung Kuo
{"title":"长短期记忆网络在台湾西海岸台风海浪预报中的应用","authors":"Wei-Ting Chao, Ting-Jung Kuo","doi":"10.3390/s24134305","DOIUrl":null,"url":null,"abstract":"Huge waves caused by typhoons often induce severe disasters along coastal areas, making the effective prediction of typhoon-induced waves a crucial research issue for researchers. In recent years, the development of the Internet of Underwater Things (IoUT) has rapidly increased the prediction of oceanic environmental disasters. Past studies have utilized meteorological data and feedforward neural networks (e.g., BPNN) with static network structures to establish short lead time (e.g., 1 h) typhoon wave prediction models for the coast of Taiwan. However, sufficient lead time for prediction remains essential for preparedness, early warning, and response to minimize the loss of lives and properties during typhoons. The aim of this research is to construct a novel long lead time typhoon-induced wave prediction model using Long Short-Term Memory (LSTM), which incorporates a dynamic network structure. LSTM can capture long-term information through its recurrent structure and selectively retain necessary signals using memory gates. Compared to earlier studies, this method extends the prediction lead time and significantly improves the learning and generalization capability, thereby enhancing prediction accuracy markedly.","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long Short-Term Memory Networks’ Application on Typhoon Wave Prediction for the Western Coast of Taiwan\",\"authors\":\"Wei-Ting Chao, Ting-Jung Kuo\",\"doi\":\"10.3390/s24134305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Huge waves caused by typhoons often induce severe disasters along coastal areas, making the effective prediction of typhoon-induced waves a crucial research issue for researchers. In recent years, the development of the Internet of Underwater Things (IoUT) has rapidly increased the prediction of oceanic environmental disasters. Past studies have utilized meteorological data and feedforward neural networks (e.g., BPNN) with static network structures to establish short lead time (e.g., 1 h) typhoon wave prediction models for the coast of Taiwan. However, sufficient lead time for prediction remains essential for preparedness, early warning, and response to minimize the loss of lives and properties during typhoons. The aim of this research is to construct a novel long lead time typhoon-induced wave prediction model using Long Short-Term Memory (LSTM), which incorporates a dynamic network structure. LSTM can capture long-term information through its recurrent structure and selectively retain necessary signals using memory gates. Compared to earlier studies, this method extends the prediction lead time and significantly improves the learning and generalization capability, thereby enhancing prediction accuracy markedly.\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24134305\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24134305","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

台风引发的巨浪经常给沿海地区造成严重灾害,因此如何有效预测台风引发的海浪成为研究人员面临的重要研究课题。近年来,水下物联网(IoUT)的发展迅速提高了海洋环境灾害的预测水平。过去的研究利用气象数据和具有静态网络结构的前馈神经网络(如 BPNN),建立了短前导时间(如 1 小时)的台湾沿海台风海浪预测模型。然而,足够的预测前置时间对于备灾、预警和响应仍然至关重要,以最大限度地减少台风期间的生命和财产损失。本研究的目的是利用包含动态网络结构的长短期记忆(LSTM)构建一个新型的长准备期台风诱发波浪预测模型。LSTM 可通过其递归结构捕捉长期信息,并利用记忆门选择性地保留必要信号。与之前的研究相比,该方法延长了预测准备时间,显著提高了学习和泛化能力,从而明显提高了预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long Short-Term Memory Networks’ Application on Typhoon Wave Prediction for the Western Coast of Taiwan
Huge waves caused by typhoons often induce severe disasters along coastal areas, making the effective prediction of typhoon-induced waves a crucial research issue for researchers. In recent years, the development of the Internet of Underwater Things (IoUT) has rapidly increased the prediction of oceanic environmental disasters. Past studies have utilized meteorological data and feedforward neural networks (e.g., BPNN) with static network structures to establish short lead time (e.g., 1 h) typhoon wave prediction models for the coast of Taiwan. However, sufficient lead time for prediction remains essential for preparedness, early warning, and response to minimize the loss of lives and properties during typhoons. The aim of this research is to construct a novel long lead time typhoon-induced wave prediction model using Long Short-Term Memory (LSTM), which incorporates a dynamic network structure. LSTM can capture long-term information through its recurrent structure and selectively retain necessary signals using memory gates. Compared to earlier studies, this method extends the prediction lead time and significantly improves the learning and generalization capability, thereby enhancing prediction accuracy markedly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Blockchain 6G-Based Wireless Network Security Management with Optimization Using Machine Learning Techniques. A Comprehensive Review on the Viscoelastic Parameters Used for Engineering Materials, Including Soft Materials, and the Relationships between Different Damping Parameters. A Mixed Approach for Clock Synchronization in Distributed Data Acquisition Systems. A Novel Topology of a 3 × 3 Series Phased Array Antenna with Aperture-Coupled Feeding. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1