使用 CyberGuard 框架在边缘和雾计算中进行信任管理和资源优化

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-07-02 DOI:10.3390/s24134308
Ahmed M. Alwakeel, Abdulrahman K. Alnaim
{"title":"使用 CyberGuard 框架在边缘和雾计算中进行信任管理和资源优化","authors":"Ahmed M. Alwakeel, Abdulrahman K. Alnaim","doi":"10.3390/s24134308","DOIUrl":null,"url":null,"abstract":"The growing importance of edge and fog computing in the modern IT infrastructure is driven by the rise of decentralized applications. However, resource allocation within these frameworks is challenging due to varying device capabilities and dynamic network conditions. Conventional approaches often result in poor resource use and slowed advancements. This study presents a novel strategy for enhancing resource allocation in edge and fog computing by integrating machine learning with the blockchain for reliable trust management. Our proposed framework, called CyberGuard, leverages the blockchain’s inherent immutability and decentralization to establish a trustworthy and transparent network for monitoring and verifying edge and fog computing transactions. CyberGuard combines the Trust2Vec model with conventional machine-learning models like SVM, KNN, and random forests, creating a robust mechanism for assessing trust and security risks. Through detailed optimization and case studies, CyberGuard demonstrates significant improvements in resource allocation efficiency and overall system performance in real-world scenarios. Our results highlight CyberGuard’s effectiveness, evidenced by a remarkable accuracy, precision, recall, and F1-score of 98.18%, showcasing the transformative potential of our comprehensive approach in edge and fog computing environments.","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trust Management and Resource Optimization in Edge and Fog Computing Using the CyberGuard Framework\",\"authors\":\"Ahmed M. Alwakeel, Abdulrahman K. Alnaim\",\"doi\":\"10.3390/s24134308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing importance of edge and fog computing in the modern IT infrastructure is driven by the rise of decentralized applications. However, resource allocation within these frameworks is challenging due to varying device capabilities and dynamic network conditions. Conventional approaches often result in poor resource use and slowed advancements. This study presents a novel strategy for enhancing resource allocation in edge and fog computing by integrating machine learning with the blockchain for reliable trust management. Our proposed framework, called CyberGuard, leverages the blockchain’s inherent immutability and decentralization to establish a trustworthy and transparent network for monitoring and verifying edge and fog computing transactions. CyberGuard combines the Trust2Vec model with conventional machine-learning models like SVM, KNN, and random forests, creating a robust mechanism for assessing trust and security risks. Through detailed optimization and case studies, CyberGuard demonstrates significant improvements in resource allocation efficiency and overall system performance in real-world scenarios. Our results highlight CyberGuard’s effectiveness, evidenced by a remarkable accuracy, precision, recall, and F1-score of 98.18%, showcasing the transformative potential of our comprehensive approach in edge and fog computing environments.\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24134308\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24134308","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

分散式应用的兴起推动了边缘计算和雾计算在现代 IT 基础架构中日益重要的地位。然而,由于设备能力和动态网络条件各不相同,在这些框架内进行资源分配极具挑战性。传统方法通常会导致资源利用率低下和进展缓慢。本研究提出了一种新颖的策略,通过将机器学习与区块链整合,实现可靠的信任管理,从而增强边缘和雾计算中的资源分配。我们提出的框架名为 "CyberGuard",它利用区块链固有的不变性和去中心化特性,建立了一个可信、透明的网络,用于监控和验证边缘与雾计算交易。CyberGuard 将 Trust2Vec 模型与 SVM、KNN 和随机森林等传统机器学习模型相结合,创建了一种用于评估信任和安全风险的强大机制。通过详细的优化和案例研究,CyberGuard 在实际应用场景中显著提高了资源分配效率和整体系统性能。我们的研究结果凸显了 CyberGuard 的有效性,其显著的准确率、精确度、召回率和 F1 分数高达 98.18%,展示了我们的综合方法在边缘和雾计算环境中的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trust Management and Resource Optimization in Edge and Fog Computing Using the CyberGuard Framework
The growing importance of edge and fog computing in the modern IT infrastructure is driven by the rise of decentralized applications. However, resource allocation within these frameworks is challenging due to varying device capabilities and dynamic network conditions. Conventional approaches often result in poor resource use and slowed advancements. This study presents a novel strategy for enhancing resource allocation in edge and fog computing by integrating machine learning with the blockchain for reliable trust management. Our proposed framework, called CyberGuard, leverages the blockchain’s inherent immutability and decentralization to establish a trustworthy and transparent network for monitoring and verifying edge and fog computing transactions. CyberGuard combines the Trust2Vec model with conventional machine-learning models like SVM, KNN, and random forests, creating a robust mechanism for assessing trust and security risks. Through detailed optimization and case studies, CyberGuard demonstrates significant improvements in resource allocation efficiency and overall system performance in real-world scenarios. Our results highlight CyberGuard’s effectiveness, evidenced by a remarkable accuracy, precision, recall, and F1-score of 98.18%, showcasing the transformative potential of our comprehensive approach in edge and fog computing environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Blockchain 6G-Based Wireless Network Security Management with Optimization Using Machine Learning Techniques. A Comprehensive Review on the Viscoelastic Parameters Used for Engineering Materials, Including Soft Materials, and the Relationships between Different Damping Parameters. A Mixed Approach for Clock Synchronization in Distributed Data Acquisition Systems. A Novel Topology of a 3 × 3 Series Phased Array Antenna with Aperture-Coupled Feeding. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1