无人机载磁力梯度测量在考古中的应用

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-07-01 DOI:10.3390/s24134270
Filippo Accomando, Giovanni Florio
{"title":"无人机载磁力梯度测量在考古中的应用","authors":"Filippo Accomando, Giovanni Florio","doi":"10.3390/s24134270","DOIUrl":null,"url":null,"abstract":"The use of magnetometers arranged in a gradiometer configuration offers a practical and widely used solution, particularly in archaeological applications where the sources of interest are generally shallow. Since magnetic anomalies due to archaeological remains often have low amplitudes, highly sensitive magnetic sensors are kept very close to the ground to reveal buried structures. However, the deployment of Unmanned Aerial Vehicles (UAVs) is increasingly becoming a reliable and valuable tool for the acquisition of magnetic data, providing uniform coverage of large areas and access to even very steep terrain, saving time and reducing risks. However, the application of a vertical gradiometer for drone-borne measurements is still challenging due to the instability of the system drone magnetometer in flight and noise issues due to the magnetic interference of the mobile platform or related to the oscillation of the suspended sensors. We present the implementation of a magnetic vertical gradiometer UAV system and its use in an archaeological area of Southern Italy. To reduce the magnetic and electromagnetic noise caused by the aircraft, the magnetometer was suspended 3m below the drone using ropes. A Continuous Wavelet Transform analysis of data collected in controlled tests confirmed that several characteristic power spectrum peaks occur at frequencies compatible with the magnetometer oscillations. This noise was then eliminated with a properly designed low-pass filter. The resulting drone-borne vertical gradient data compare very well with ground-based magnetic measurements collected in the same area and taken as a control dataset.","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drone-Borne Magnetic Gradiometry in Archaeological Applications\",\"authors\":\"Filippo Accomando, Giovanni Florio\",\"doi\":\"10.3390/s24134270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of magnetometers arranged in a gradiometer configuration offers a practical and widely used solution, particularly in archaeological applications where the sources of interest are generally shallow. Since magnetic anomalies due to archaeological remains often have low amplitudes, highly sensitive magnetic sensors are kept very close to the ground to reveal buried structures. However, the deployment of Unmanned Aerial Vehicles (UAVs) is increasingly becoming a reliable and valuable tool for the acquisition of magnetic data, providing uniform coverage of large areas and access to even very steep terrain, saving time and reducing risks. However, the application of a vertical gradiometer for drone-borne measurements is still challenging due to the instability of the system drone magnetometer in flight and noise issues due to the magnetic interference of the mobile platform or related to the oscillation of the suspended sensors. We present the implementation of a magnetic vertical gradiometer UAV system and its use in an archaeological area of Southern Italy. To reduce the magnetic and electromagnetic noise caused by the aircraft, the magnetometer was suspended 3m below the drone using ropes. A Continuous Wavelet Transform analysis of data collected in controlled tests confirmed that several characteristic power spectrum peaks occur at frequencies compatible with the magnetometer oscillations. This noise was then eliminated with a properly designed low-pass filter. The resulting drone-borne vertical gradient data compare very well with ground-based magnetic measurements collected in the same area and taken as a control dataset.\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24134270\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24134270","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用梯度仪配置的磁力计提供了一种实用且广泛使用的解决方案,特别是在考古应用中,因为考古兴趣源通常较浅。由于考古遗迹产生的磁异常通常振幅较低,高灵敏度的磁传感器需要非常靠近地面,以揭示埋藏的结构。然而,无人驾驶飞行器(UAVs)的部署正日益成为获取磁性数据的可靠而有价值的工具,它可以均匀地覆盖大片区域,甚至可以进入非常陡峭的地形,从而节省时间并降低风险。然而,由于无人机磁力计系统在飞行过程中的不稳定性,以及移动平台的磁干扰或悬浮传感器振荡引起的噪声问题,应用垂直梯度仪进行无人机机载测量仍具有挑战性。我们介绍了磁力垂直梯度仪无人机系统的实施及其在意大利南部考古区域的应用。为了减少飞机造成的磁场和电磁噪声,磁力计用绳索悬挂在无人机下方 3 米处。对在受控测试中收集的数据进行连续小波变换分析后证实,在与磁强计振荡相适应的频率上出现了几个特征功率谱峰。然后,使用适当设计的低通滤波器消除了这些噪声。由此得出的无人机机载垂直梯度数据与在同一地区收集的地面磁力测量数据(作为对照数据集)相比,效果非常好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Drone-Borne Magnetic Gradiometry in Archaeological Applications
The use of magnetometers arranged in a gradiometer configuration offers a practical and widely used solution, particularly in archaeological applications where the sources of interest are generally shallow. Since magnetic anomalies due to archaeological remains often have low amplitudes, highly sensitive magnetic sensors are kept very close to the ground to reveal buried structures. However, the deployment of Unmanned Aerial Vehicles (UAVs) is increasingly becoming a reliable and valuable tool for the acquisition of magnetic data, providing uniform coverage of large areas and access to even very steep terrain, saving time and reducing risks. However, the application of a vertical gradiometer for drone-borne measurements is still challenging due to the instability of the system drone magnetometer in flight and noise issues due to the magnetic interference of the mobile platform or related to the oscillation of the suspended sensors. We present the implementation of a magnetic vertical gradiometer UAV system and its use in an archaeological area of Southern Italy. To reduce the magnetic and electromagnetic noise caused by the aircraft, the magnetometer was suspended 3m below the drone using ropes. A Continuous Wavelet Transform analysis of data collected in controlled tests confirmed that several characteristic power spectrum peaks occur at frequencies compatible with the magnetometer oscillations. This noise was then eliminated with a properly designed low-pass filter. The resulting drone-borne vertical gradient data compare very well with ground-based magnetic measurements collected in the same area and taken as a control dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Blockchain 6G-Based Wireless Network Security Management with Optimization Using Machine Learning Techniques. A Comprehensive Review on the Viscoelastic Parameters Used for Engineering Materials, Including Soft Materials, and the Relationships between Different Damping Parameters. A Mixed Approach for Clock Synchronization in Distributed Data Acquisition Systems. A Novel Topology of a 3 × 3 Series Phased Array Antenna with Aperture-Coupled Feeding. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1