用于点云分析的感知场空间

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-07-01 DOI:10.3390/s24134274
Zhongbin Jiang, Hai Tao, Ye Liu
{"title":"用于点云分析的感知场空间","authors":"Zhongbin Jiang, Hai Tao, Ye Liu","doi":"10.3390/s24134274","DOIUrl":null,"url":null,"abstract":"Similar to convolutional neural networks for image processing, existing analysis methods for 3D point clouds often require the designation of a local neighborhood to describe the local features of the point cloud. This local neighborhood is typically manually specified, which makes it impossible for the network to dynamically adjust the receptive field’s range. If the range is too large, it tends to overlook local details, and if it is too small, it cannot establish global dependencies. To address this issue, we introduce in this paper a new concept: receptive field space (RFS). With a minor computational cost, we extract features from multiple consecutive receptive field ranges to form this new receptive field space. On this basis, we further propose a receptive field space attention mechanism, enabling the network to adaptively select the most effective receptive field range from RFS, thus equipping the network with the ability to adjust granularity adaptively. Our approach achieved state-of-the-art performance in both point cloud classification, with an overall accuracy (OA) of 94.2%, and part segmentation, achieving an mIoU of 86.0%, demonstrating the effectiveness of our method.","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Receptive Field Space for Point Cloud Analysis\",\"authors\":\"Zhongbin Jiang, Hai Tao, Ye Liu\",\"doi\":\"10.3390/s24134274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Similar to convolutional neural networks for image processing, existing analysis methods for 3D point clouds often require the designation of a local neighborhood to describe the local features of the point cloud. This local neighborhood is typically manually specified, which makes it impossible for the network to dynamically adjust the receptive field’s range. If the range is too large, it tends to overlook local details, and if it is too small, it cannot establish global dependencies. To address this issue, we introduce in this paper a new concept: receptive field space (RFS). With a minor computational cost, we extract features from multiple consecutive receptive field ranges to form this new receptive field space. On this basis, we further propose a receptive field space attention mechanism, enabling the network to adaptively select the most effective receptive field range from RFS, thus equipping the network with the ability to adjust granularity adaptively. Our approach achieved state-of-the-art performance in both point cloud classification, with an overall accuracy (OA) of 94.2%, and part segmentation, achieving an mIoU of 86.0%, demonstrating the effectiveness of our method.\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24134274\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24134274","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

与用于图像处理的卷积神经网络类似,现有的三维点云分析方法通常需要指定一个局部邻域来描述点云的局部特征。这种局部邻域通常是手动指定的,这使得网络无法动态调整感受野的范围。如果范围过大,往往会忽略局部细节;如果范围过小,则无法建立全局依赖关系。为了解决这个问题,我们在本文中引入了一个新概念:感受野空间(RFS)。我们从多个连续的感受野范围中提取特征,形成这个新的感受野空间,计算成本很低。在此基础上,我们进一步提出了感受野空间关注机制,使网络能够自适应地从 RFS 中选择最有效的感受野范围,从而使网络具备自适应调整粒度的能力。我们的方法在点云分类(总体准确率 (OA) 为 94.2%)和部件分割(mIoU 为 86.0%)方面都取得了一流的性能,证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Receptive Field Space for Point Cloud Analysis
Similar to convolutional neural networks for image processing, existing analysis methods for 3D point clouds often require the designation of a local neighborhood to describe the local features of the point cloud. This local neighborhood is typically manually specified, which makes it impossible for the network to dynamically adjust the receptive field’s range. If the range is too large, it tends to overlook local details, and if it is too small, it cannot establish global dependencies. To address this issue, we introduce in this paper a new concept: receptive field space (RFS). With a minor computational cost, we extract features from multiple consecutive receptive field ranges to form this new receptive field space. On this basis, we further propose a receptive field space attention mechanism, enabling the network to adaptively select the most effective receptive field range from RFS, thus equipping the network with the ability to adjust granularity adaptively. Our approach achieved state-of-the-art performance in both point cloud classification, with an overall accuracy (OA) of 94.2%, and part segmentation, achieving an mIoU of 86.0%, demonstrating the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Blockchain 6G-Based Wireless Network Security Management with Optimization Using Machine Learning Techniques. A Comprehensive Review on the Viscoelastic Parameters Used for Engineering Materials, Including Soft Materials, and the Relationships between Different Damping Parameters. A Mixed Approach for Clock Synchronization in Distributed Data Acquisition Systems. A Novel Topology of a 3 × 3 Series Phased Array Antenna with Aperture-Coupled Feeding. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1