铁基磁性纳米粒子的溶液燃烧合成:惰性气体压力的影响

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Sol-Gel Science and Technology Pub Date : 2024-06-18 DOI:10.1007/s10971-024-06442-5
Davit Hambardzumyan, Harutyun Gyulasaryan, Astghik Kuzanyan, Armenuhi Sargsyan, Vardges Avagyan, Stanislav Kubrin, Aram Manukyan, Alexander S. Mukasyan
{"title":"铁基磁性纳米粒子的溶液燃烧合成:惰性气体压力的影响","authors":"Davit Hambardzumyan, Harutyun Gyulasaryan, Astghik Kuzanyan, Armenuhi Sargsyan, Vardges Avagyan, Stanislav Kubrin, Aram Manukyan, Alexander S. Mukasyan","doi":"10.1007/s10971-024-06442-5","DOIUrl":null,"url":null,"abstract":"<p>We report the synthesis of iron oxide nanoparticles using solution combustion synthesis, focusing on the controlled manipulation of material characteristics, such as particle size, phase composition, and magnetic properties, by applying external inert gas pressure. It was shown that variation of nitrogen gas pressure in the reactor in the range 0.1 to 1.1 MPa changed the time-temperature history of the process and resulted in the gradual change of phase composition of the fabricated materials along the FeO → FeO∙Fe<sub>2</sub>O<sub>3</sub> → Fe<sub>2</sub>O<sub>3</sub> route. The particle size varied in the 50–400 nm range, with a maximum for powder synthesized at a pressure of 0.25 MPa. For magnetic fluid hyperthermia, the critical parameter is specific loss power. It was demonstrated that this parameter can be optimized by gas pressure variation. The maximum specific loss power measured under conditions suitable for magnetic hyperthermia (magnetic field 33.5 mT and frequency 259.6 kHz) appears to be 174 W/g. The proposed innovative approach is an effective tool for controlling the synthesis of various nanoparticles with desired properties.</p>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution combustion synthesis of iron-based magnetic nanoparticles: influence of inert gas pressure\",\"authors\":\"Davit Hambardzumyan, Harutyun Gyulasaryan, Astghik Kuzanyan, Armenuhi Sargsyan, Vardges Avagyan, Stanislav Kubrin, Aram Manukyan, Alexander S. Mukasyan\",\"doi\":\"10.1007/s10971-024-06442-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We report the synthesis of iron oxide nanoparticles using solution combustion synthesis, focusing on the controlled manipulation of material characteristics, such as particle size, phase composition, and magnetic properties, by applying external inert gas pressure. It was shown that variation of nitrogen gas pressure in the reactor in the range 0.1 to 1.1 MPa changed the time-temperature history of the process and resulted in the gradual change of phase composition of the fabricated materials along the FeO → FeO∙Fe<sub>2</sub>O<sub>3</sub> → Fe<sub>2</sub>O<sub>3</sub> route. The particle size varied in the 50–400 nm range, with a maximum for powder synthesized at a pressure of 0.25 MPa. For magnetic fluid hyperthermia, the critical parameter is specific loss power. It was demonstrated that this parameter can be optimized by gas pressure variation. The maximum specific loss power measured under conditions suitable for magnetic hyperthermia (magnetic field 33.5 mT and frequency 259.6 kHz) appears to be 174 W/g. The proposed innovative approach is an effective tool for controlling the synthesis of various nanoparticles with desired properties.</p>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s10971-024-06442-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10971-024-06442-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了利用溶液燃烧合成法合成氧化铁纳米粒子的过程,重点是通过施加外部惰性气体压力来控制材料特性,如粒度、相组成和磁性能。研究表明,反应器中氮气压力在 0.1 至 1.1 兆帕范围内的变化改变了过程的时间-温度历程,并导致制备材料的相组成沿着 FeO → FeO∙Fe2O3 → Fe2O3 路线逐渐变化。粒度在 50-400 纳米范围内变化,在 0.25 兆帕压力下合成的粉末粒度最大。对于磁流体热疗,关键参数是比损耗功率。研究表明,这一参数可通过气体压力变化进行优化。在适合磁热效应的条件下(磁场 33.5 mT,频率 259.6 kHz)测得的最大比损耗功率似乎为 174 W/g。所提出的创新方法是控制具有所需特性的各种纳米粒子合成的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solution combustion synthesis of iron-based magnetic nanoparticles: influence of inert gas pressure

We report the synthesis of iron oxide nanoparticles using solution combustion synthesis, focusing on the controlled manipulation of material characteristics, such as particle size, phase composition, and magnetic properties, by applying external inert gas pressure. It was shown that variation of nitrogen gas pressure in the reactor in the range 0.1 to 1.1 MPa changed the time-temperature history of the process and resulted in the gradual change of phase composition of the fabricated materials along the FeO → FeO∙Fe2O3 → Fe2O3 route. The particle size varied in the 50–400 nm range, with a maximum for powder synthesized at a pressure of 0.25 MPa. For magnetic fluid hyperthermia, the critical parameter is specific loss power. It was demonstrated that this parameter can be optimized by gas pressure variation. The maximum specific loss power measured under conditions suitable for magnetic hyperthermia (magnetic field 33.5 mT and frequency 259.6 kHz) appears to be 174 W/g. The proposed innovative approach is an effective tool for controlling the synthesis of various nanoparticles with desired properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
期刊最新文献
Transparent self-cleaning coating prepared from SiO2/B4C and SiO2/B4C/TiO2 for the solar cell Calcium hydroxide aerogels and xerogels toward CO2 fixation: through an epoxide-mediated sol-gel reaction First principles study to investigate structural, optical properties and bandgap engineering of XSnI3(X=Rb, K, Tl, Cs) materials for solar cell applications Outstanding ferroelectric properties in the narrow bandgap cobalt-substituted BiFeO3 spin-coated films Sb/Cu/Zn tri-doped BaTiO3 semiconductor: colossal dielectric and high photodegradation activities for crystal violet, diclofenac sodium, and Congo red contaminants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1