稀释局部高浓度离子凝胶电解质实现高压准固态锂金属电池

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-07-03 DOI:10.1063/5.0221854
Shufeng Song, Zongyuan Chen, Shengxian Wang, Fengkun Wei, Serguei V. Savilov, Anji Reddy Polu, Pramod K. Singh, Zhaoqin Liu, Ning Hu
{"title":"稀释局部高浓度离子凝胶电解质实现高压准固态锂金属电池","authors":"Shufeng Song, Zongyuan Chen, Shengxian Wang, Fengkun Wei, Serguei V. Savilov, Anji Reddy Polu, Pramod K. Singh, Zhaoqin Liu, Ning Hu","doi":"10.1063/5.0221854","DOIUrl":null,"url":null,"abstract":"Ionogels, which are being considered as quasi-solid electrolytes for energy-storage devices, exhibited technical superiority in terms of nonflammability, negligible vapor pressure, remarkable thermostability, high ionic conductivity, and broad electrochemical stability window. However, their applications in lithium metal batteries (LMBs) have been hindered by several issues: poor compatibility with Li-metal anodes and high-voltage cathodes, high viscosity, and inadequate wettability. Little attention has been paid to ionogel-based low-concentration electrolytes, despite their potential advantages in terms of Li+ mobility, viscosity, electrode wettability, and cost. Here, we demonstrate the surprising capabilities of localized high-concentration ionogel (LHCI) and dilutedly localized high-concentration ionogel (DLHCI) electrolytes, utilizing the non-solvating fluorinated ether 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, to realize high-voltage quasi-solid-state lithium metal batteries (QSLMBs). Notably, the DLHCI electrolyte not only delivers superior ionic conductivity of 3.93 × 10−3 S cm−1 but also provides a high Li plating/stripping Coulombic efficiency exceeding 99%. Moreover, it significantly enhances anodic stability when paired with 4.4 V LiNi0.8Co0.1Mn0.1O2 (NCM811) and 4.8 V LiNi0.5Mn1.5O4 (LNMO). Consequently, substantial improvement in cycling performance of QSLMBs has been realized with the DLHCI electrolyte.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dilutedly localized high-concentration ionogel electrolyte enabling high-voltage quasi-solid-state lithium metal batteries\",\"authors\":\"Shufeng Song, Zongyuan Chen, Shengxian Wang, Fengkun Wei, Serguei V. Savilov, Anji Reddy Polu, Pramod K. Singh, Zhaoqin Liu, Ning Hu\",\"doi\":\"10.1063/5.0221854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ionogels, which are being considered as quasi-solid electrolytes for energy-storage devices, exhibited technical superiority in terms of nonflammability, negligible vapor pressure, remarkable thermostability, high ionic conductivity, and broad electrochemical stability window. However, their applications in lithium metal batteries (LMBs) have been hindered by several issues: poor compatibility with Li-metal anodes and high-voltage cathodes, high viscosity, and inadequate wettability. Little attention has been paid to ionogel-based low-concentration electrolytes, despite their potential advantages in terms of Li+ mobility, viscosity, electrode wettability, and cost. Here, we demonstrate the surprising capabilities of localized high-concentration ionogel (LHCI) and dilutedly localized high-concentration ionogel (DLHCI) electrolytes, utilizing the non-solvating fluorinated ether 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, to realize high-voltage quasi-solid-state lithium metal batteries (QSLMBs). Notably, the DLHCI electrolyte not only delivers superior ionic conductivity of 3.93 × 10−3 S cm−1 but also provides a high Li plating/stripping Coulombic efficiency exceeding 99%. Moreover, it significantly enhances anodic stability when paired with 4.4 V LiNi0.8Co0.1Mn0.1O2 (NCM811) and 4.8 V LiNi0.5Mn1.5O4 (LNMO). Consequently, substantial improvement in cycling performance of QSLMBs has been realized with the DLHCI electrolyte.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0221854\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0221854","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

离子凝胶被认为是储能设备的准固体电解质,在不可燃性、可忽略的蒸汽压、显著的热稳定性、高离子电导率和宽电化学稳定性窗口等方面具有技术优势。然而,它们在锂金属电池(LMB)中的应用却受到几个问题的阻碍:与锂金属阳极和高压阴极的兼容性差、粘度高和润湿性不足。基于离子凝胶的低浓度电解质虽然在锂+迁移率、粘度、电极润湿性和成本方面具有潜在优势,但却很少受到关注。在这里,我们展示了局部高浓度离子凝胶(LHCI)和稀释局部高浓度离子凝胶(DLHCI)电解质的惊人能力,它们利用非溶解性氟化醚 1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚实现了高压准固态锂金属电池(QSLMB)。值得注意的是,DLHCI 电解液不仅离子电导率高达 3.93 × 10-3 S cm-1,而且锂镀层/剥离库仑效率超过 99%。此外,当与 4.4 V LiNi0.8Co0.1Mn0.1O2 (NCM811) 和 4.8 V LiNi0.5Mn1.5O4 (LNMO) 搭配使用时,它还能大大提高阳极稳定性。因此,在使用 DLHCI 电解液时,QSLMB 的循环性能得到了显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dilutedly localized high-concentration ionogel electrolyte enabling high-voltage quasi-solid-state lithium metal batteries
Ionogels, which are being considered as quasi-solid electrolytes for energy-storage devices, exhibited technical superiority in terms of nonflammability, negligible vapor pressure, remarkable thermostability, high ionic conductivity, and broad electrochemical stability window. However, their applications in lithium metal batteries (LMBs) have been hindered by several issues: poor compatibility with Li-metal anodes and high-voltage cathodes, high viscosity, and inadequate wettability. Little attention has been paid to ionogel-based low-concentration electrolytes, despite their potential advantages in terms of Li+ mobility, viscosity, electrode wettability, and cost. Here, we demonstrate the surprising capabilities of localized high-concentration ionogel (LHCI) and dilutedly localized high-concentration ionogel (DLHCI) electrolytes, utilizing the non-solvating fluorinated ether 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, to realize high-voltage quasi-solid-state lithium metal batteries (QSLMBs). Notably, the DLHCI electrolyte not only delivers superior ionic conductivity of 3.93 × 10−3 S cm−1 but also provides a high Li plating/stripping Coulombic efficiency exceeding 99%. Moreover, it significantly enhances anodic stability when paired with 4.4 V LiNi0.8Co0.1Mn0.1O2 (NCM811) and 4.8 V LiNi0.5Mn1.5O4 (LNMO). Consequently, substantial improvement in cycling performance of QSLMBs has been realized with the DLHCI electrolyte.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
InP-based high-performance extended short wavelength p-B-n infrared photodetector with InGaAs/GaAsSb type-II superlattice absorption layer High conductivity coherently strained quantum well XHEMT heterostructures on AlN substrates with delta doping Dipropyl sulfide optimized buried interface to improve the performance of inverted perovskite solar cells Tunable luminous color of LEDs achieved through integrating reliable multilevel RRAM Toward utilizing scanning gate microscopy as a high-resolution probe of valley splitting in Si/SiGe heterostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1