以随机矩阵为单体哈密顿的自由费米子的纠缠熵

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-06-30 DOI:10.3390/e26070564
Leonid Pastur, Victor Slavin
{"title":"以随机矩阵为单体哈密顿的自由费米子的纠缠熵","authors":"Leonid Pastur, Victor Slavin","doi":"10.3390/e26070564","DOIUrl":null,"url":null,"abstract":"We consider a quantum system of large size N and its subsystem of size L, assuming that N is much larger than L, which can also be sufficiently large, i.e., 1≪L≲N. A widely accepted mathematical version of this inequality is the asymptotic regime of successive limits: first the macroscopic limit N→∞, then an asymptotic analysis of the entanglement entropy as L→∞. In this paper, we consider another version of the above inequality: the regime of asymptotically proportional L and N, i.e., the simultaneous limits L→∞,N→∞,L/N→λ>0. Specifically, we consider a system of free fermions that is in its ground state, and such that its one-body Hamiltonian is a large random matrix, which is often used to model long-range hopping. By using random matrix theory, we show that in this case, the entanglement entropy obeys the volume law known for systems with short-range hopping but described either by a mixed state or a pure strongly excited state of the Hamiltonian. We also give streamlined proof of Page’s formula for the entanglement entropy of black hole radiation for a wide class of typical ground states, thereby proving the universality and the typicality of the formula.","PeriodicalId":11694,"journal":{"name":"Entropy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entanglement Entropy of Free Fermions with a Random Matrix as a One-Body Hamiltonian\",\"authors\":\"Leonid Pastur, Victor Slavin\",\"doi\":\"10.3390/e26070564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a quantum system of large size N and its subsystem of size L, assuming that N is much larger than L, which can also be sufficiently large, i.e., 1≪L≲N. A widely accepted mathematical version of this inequality is the asymptotic regime of successive limits: first the macroscopic limit N→∞, then an asymptotic analysis of the entanglement entropy as L→∞. In this paper, we consider another version of the above inequality: the regime of asymptotically proportional L and N, i.e., the simultaneous limits L→∞,N→∞,L/N→λ>0. Specifically, we consider a system of free fermions that is in its ground state, and such that its one-body Hamiltonian is a large random matrix, which is often used to model long-range hopping. By using random matrix theory, we show that in this case, the entanglement entropy obeys the volume law known for systems with short-range hopping but described either by a mixed state or a pure strongly excited state of the Hamiltonian. We also give streamlined proof of Page’s formula for the entanglement entropy of black hole radiation for a wide class of typical ground states, thereby proving the universality and the typicality of the formula.\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26070564\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26070564","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个大小为 N 的量子系统及其大小为 L 的子系统,假设 N 远大于 L,L 也可以足够大,即 1≪L≲N。这个不等式广为接受的数学版本是连续极限的渐近机制:首先是宏观极限 N→∞,然后是纠缠熵随 L→∞ 的渐近分析。具体来说,我们考虑一个处于基态的自由费米子系统,它的单体哈密顿是一个大的随机矩阵,通常用来模拟长程跳变。通过使用随机矩阵理论,我们证明了在这种情况下,纠缠熵服从短程跳跃系统的体积定律,但该系统由哈密顿的混合态或纯强激发态描述。我们还给出了佩奇关于黑洞辐射纠缠熵公式的简化证明,适用于一大类典型的基态,从而证明了该公式的普遍性和典型性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Entanglement Entropy of Free Fermions with a Random Matrix as a One-Body Hamiltonian
We consider a quantum system of large size N and its subsystem of size L, assuming that N is much larger than L, which can also be sufficiently large, i.e., 1≪L≲N. A widely accepted mathematical version of this inequality is the asymptotic regime of successive limits: first the macroscopic limit N→∞, then an asymptotic analysis of the entanglement entropy as L→∞. In this paper, we consider another version of the above inequality: the regime of asymptotically proportional L and N, i.e., the simultaneous limits L→∞,N→∞,L/N→λ>0. Specifically, we consider a system of free fermions that is in its ground state, and such that its one-body Hamiltonian is a large random matrix, which is often used to model long-range hopping. By using random matrix theory, we show that in this case, the entanglement entropy obeys the volume law known for systems with short-range hopping but described either by a mixed state or a pure strongly excited state of the Hamiltonian. We also give streamlined proof of Page’s formula for the entanglement entropy of black hole radiation for a wide class of typical ground states, thereby proving the universality and the typicality of the formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Motor Fault Diagnosis Based on Convolutional Block Attention Module-Xception Lightweight Neural Network. One-Photon-Interference Quantum Secure Direct Communication. The Application of Pinch Technology to a Novel Closed-Loop Spray Drying System with a Condenser and Reheater. Autocatalytic Sets and Assembly Theory: A Toy Model Perspective. Transient GI/MSP/1/N Queue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1