因果化收敛交叉映射及其在因果关系分析中的应用

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-06-24 DOI:10.3390/e26070539
Boxin Sun, Jinxian Deng, Norman Scheel, David C. Zhu, Jian Ren, Rong Zhang, Tongtong Li
{"title":"因果化收敛交叉映射及其在因果关系分析中的应用","authors":"Boxin Sun, Jinxian Deng, Norman Scheel, David C. Zhu, Jian Ren, Rong Zhang, Tongtong Li","doi":"10.3390/e26070539","DOIUrl":null,"url":null,"abstract":"Rooted in dynamic systems theory, convergent cross mapping (CCM) has attracted increased attention recently due to its capability in detecting linear and nonlinear causal coupling in both random and deterministic settings. One limitation with CCM is that it uses both past and future values to predict the current value, which is inconsistent with the widely accepted definition of causality, where it is assumed that the future values of one process cannot influence the past of another. To overcome this obstacle, in our previous research, we introduced the concept of causalized convergent cross mapping (cCCM), where future values are no longer used to predict the current value. In this paper, we focus on the implementation of cCCM in causality analysis. More specifically, we demonstrate the effectiveness of cCCM in identifying both linear and nonlinear causal coupling in various settings through a large number of examples, including Gaussian random variables with additive noise, sinusoidal waveforms, autoregressive models, stochastic processes with a dominant spectral component embedded in noise, deterministic chaotic maps, and systems with memory, as well as experimental fMRI data. In particular, we analyze the impact of shadow manifold construction on the performance of cCCM and provide detailed guidelines on how to configure the key parameters of cCCM in different applications. Overall, our analysis indicates that cCCM is a promising and easy-to-implement tool for causality analysis in a wide spectrum of applications.","PeriodicalId":11694,"journal":{"name":"Entropy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causalized Convergent Cross Mapping and Its Implementation in Causality Analysis\",\"authors\":\"Boxin Sun, Jinxian Deng, Norman Scheel, David C. Zhu, Jian Ren, Rong Zhang, Tongtong Li\",\"doi\":\"10.3390/e26070539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rooted in dynamic systems theory, convergent cross mapping (CCM) has attracted increased attention recently due to its capability in detecting linear and nonlinear causal coupling in both random and deterministic settings. One limitation with CCM is that it uses both past and future values to predict the current value, which is inconsistent with the widely accepted definition of causality, where it is assumed that the future values of one process cannot influence the past of another. To overcome this obstacle, in our previous research, we introduced the concept of causalized convergent cross mapping (cCCM), where future values are no longer used to predict the current value. In this paper, we focus on the implementation of cCCM in causality analysis. More specifically, we demonstrate the effectiveness of cCCM in identifying both linear and nonlinear causal coupling in various settings through a large number of examples, including Gaussian random variables with additive noise, sinusoidal waveforms, autoregressive models, stochastic processes with a dominant spectral component embedded in noise, deterministic chaotic maps, and systems with memory, as well as experimental fMRI data. In particular, we analyze the impact of shadow manifold construction on the performance of cCCM and provide detailed guidelines on how to configure the key parameters of cCCM in different applications. Overall, our analysis indicates that cCCM is a promising and easy-to-implement tool for causality analysis in a wide spectrum of applications.\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26070539\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26070539","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

收敛交叉映射(CCM)植根于动态系统理论,由于其在随机和确定性环境中检测线性和非线性因果耦合的能力,最近吸引了越来越多的关注。收敛交叉映射的一个局限是,它同时使用过去和未来的值来预测当前值,这与广为接受的因果关系定义不一致,因为在因果关系定义中,假定一个过程的未来值不能影响另一个过程的过去值。为了克服这一障碍,我们在之前的研究中引入了因果收敛交叉映射(cCCM)的概念,即不再使用未来值来预测当前值。在本文中,我们将重点讨论 cCCM 在因果关系分析中的应用。更具体地说,我们通过大量实例证明了 cCCM 在各种环境下识别线性和非线性因果耦合的有效性,这些实例包括带有加性噪声的高斯随机变量、正弦波形、自回归模型、带有嵌入噪声的主导频谱分量的随机过程、确定性混沌映射、具有记忆的系统以及实验性 fMRI 数据。我们特别分析了阴影流形构造对 cCCM 性能的影响,并就如何在不同应用中配置 cCCM 的关键参数提供了详细指导。总之,我们的分析表明,cCCM 是一种前景广阔且易于实施的因果关系分析工具,适用于广泛的应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Causalized Convergent Cross Mapping and Its Implementation in Causality Analysis
Rooted in dynamic systems theory, convergent cross mapping (CCM) has attracted increased attention recently due to its capability in detecting linear and nonlinear causal coupling in both random and deterministic settings. One limitation with CCM is that it uses both past and future values to predict the current value, which is inconsistent with the widely accepted definition of causality, where it is assumed that the future values of one process cannot influence the past of another. To overcome this obstacle, in our previous research, we introduced the concept of causalized convergent cross mapping (cCCM), where future values are no longer used to predict the current value. In this paper, we focus on the implementation of cCCM in causality analysis. More specifically, we demonstrate the effectiveness of cCCM in identifying both linear and nonlinear causal coupling in various settings through a large number of examples, including Gaussian random variables with additive noise, sinusoidal waveforms, autoregressive models, stochastic processes with a dominant spectral component embedded in noise, deterministic chaotic maps, and systems with memory, as well as experimental fMRI data. In particular, we analyze the impact of shadow manifold construction on the performance of cCCM and provide detailed guidelines on how to configure the key parameters of cCCM in different applications. Overall, our analysis indicates that cCCM is a promising and easy-to-implement tool for causality analysis in a wide spectrum of applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Understanding Higher-Order Interactions in Information Space Practical Performance Analysis of MDI-QKD with Orbital Angular Momentum on UAV Relay Platform Kramers–Wannier Duality and Random-Bond Ising Model Non-Coding RNAs Extended Omnigenic Module of Cancers Contrast Information Dynamics: A Novel Information Measure for Cognitive Modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1