Saver:基于 STGCN 的主动式微服务资源调度策略

Yi Jiang, Jin Xue, Kun Hu, Tianxiang Chen, Tong Wu
{"title":"Saver:基于 STGCN 的主动式微服务资源调度策略","authors":"Yi Jiang, Jin Xue, Kun Hu, Tianxiang Chen, Tong Wu","doi":"10.1007/s10586-024-04615-z","DOIUrl":null,"url":null,"abstract":"<p>As container technology and microservices mature, applications increasingly shift to microservices and cloud deployment. Growing microservices scale complicates resource scheduling. Traditional methods, based on fixed thresholds, are simple but lead to resource waste and poor adaptability to traffic spikes. To address this problem, we design a new resource scheduling strategy Saver based on the container cloud platform, which combines a microservice request prediction model with a microservice performance evaluation model that predicts SLO (Service Level Objective) violations and a heuristic algorithm to solve the optimal resource scheduling for the cluster. We deploy the microservices open-source project sock-shop in a Kubernetes cluster to evaluate Saver. Experimental results show that Saver saves 7.9% of CPU resources, 13% of the instances, and reduces the SLO violation rate by 31.2% compared to K8s autoscaler.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saver: a proactive microservice resource scheduling strategy based on STGCN\",\"authors\":\"Yi Jiang, Jin Xue, Kun Hu, Tianxiang Chen, Tong Wu\",\"doi\":\"10.1007/s10586-024-04615-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As container technology and microservices mature, applications increasingly shift to microservices and cloud deployment. Growing microservices scale complicates resource scheduling. Traditional methods, based on fixed thresholds, are simple but lead to resource waste and poor adaptability to traffic spikes. To address this problem, we design a new resource scheduling strategy Saver based on the container cloud platform, which combines a microservice request prediction model with a microservice performance evaluation model that predicts SLO (Service Level Objective) violations and a heuristic algorithm to solve the optimal resource scheduling for the cluster. We deploy the microservices open-source project sock-shop in a Kubernetes cluster to evaluate Saver. Experimental results show that Saver saves 7.9% of CPU resources, 13% of the instances, and reduces the SLO violation rate by 31.2% compared to K8s autoscaler.</p>\",\"PeriodicalId\":501576,\"journal\":{\"name\":\"Cluster Computing\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10586-024-04615-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04615-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着容器技术和微服务的成熟,应用程序越来越多地转向微服务和云部署。微服务规模的不断扩大使资源调度变得更加复杂。基于固定阈值的传统方法虽然简单,但会造成资源浪费,对流量峰值的适应性也很差。为解决这一问题,我们设计了一种基于容器云平台的新型资源调度策略Saver,它将微服务请求预测模型与预测SLO(服务级别目标)违规情况的微服务性能评估模型和启发式算法相结合,以解决集群的最优资源调度问题。我们在 Kubernetes 集群中部署了微服务开源项目 sock-shop,以评估 Saver。实验结果表明,与 K8s autoscaler 相比,Saver 节省了 7.9% 的 CPU 资源和 13% 的实例,并将 SLO 违规率降低了 31.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Saver: a proactive microservice resource scheduling strategy based on STGCN

As container technology and microservices mature, applications increasingly shift to microservices and cloud deployment. Growing microservices scale complicates resource scheduling. Traditional methods, based on fixed thresholds, are simple but lead to resource waste and poor adaptability to traffic spikes. To address this problem, we design a new resource scheduling strategy Saver based on the container cloud platform, which combines a microservice request prediction model with a microservice performance evaluation model that predicts SLO (Service Level Objective) violations and a heuristic algorithm to solve the optimal resource scheduling for the cluster. We deploy the microservices open-source project sock-shop in a Kubernetes cluster to evaluate Saver. Experimental results show that Saver saves 7.9% of CPU resources, 13% of the instances, and reduces the SLO violation rate by 31.2% compared to K8s autoscaler.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative and qualitative similarity measure for data clustering analysis OntoXAI: a semantic web rule language approach for explainable artificial intelligence Multi-threshold image segmentation using a boosted whale optimization: case study of breast invasive ductal carcinomas PSO-ACO-based bi-phase lightweight intrusion detection system combined with GA optimized ensemble classifiers A scalable and power efficient MAC protocol with adaptive TDMA for M2M communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1