利用卷积尖峰神经网络进行鲁棒入侵检测的革命性方法

Yongxing Lin, Xiaoyan Xu, Hongyun Xu
{"title":"利用卷积尖峰神经网络进行鲁棒入侵检测的革命性方法","authors":"Yongxing Lin, Xiaoyan Xu, Hongyun Xu","doi":"10.1007/s10586-024-04603-3","DOIUrl":null,"url":null,"abstract":"<p>In an era dominated by network connectivity, the reliance on robust and secure networks has become paramount. With the advent of 5G and the Internet of Things, networks are expanding in both scale and complexity, rendering them susceptible to a myriad of cyber threats. This escalating risk encompasses potential breaches of user privacy, unauthorized access to transmitted data, and targeted attacks on the underlying network infrastructure. To safeguard the integrity and security of modern networked societies, the deployment of Network Intrusion Detection Systems is imperative. This paper presents a novel lightweight detection model that seamlessly integrates Spiking Neural Networks and Convolutional Neural Networks with advanced algorithmic frameworks. Leveraging this hybrid approach, the proposed model achieves superior detection accuracy while maintaining efficiency in terms of power consumption and computational resources. This paper presents a new style recognition model that seamlessly integrates <b>s</b>piking neural networks and convolutional neural networks with advanced algorithmic frameworks. We call this combined method Spiking-HCCN. Using this hybrid approach, Spiking-HCCN achieves superior detection accuracy while maintaining efficiency in terms of power consumption and computational resources. Comparative evaluations against state-of-the-art models, including Spiking GCN and Spike-DHS, demonstrate significant performance advantages. Spiking-HCCN outperforms these benchmarks by 24% in detection accuracy, 21% in delay, and 29% in energy efficiency, underscoring its efficacy in fortifying network security in the face of evolving cyber threats.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A revolutionary approach to use convolutional spiking neural networks for robust intrusion detection\",\"authors\":\"Yongxing Lin, Xiaoyan Xu, Hongyun Xu\",\"doi\":\"10.1007/s10586-024-04603-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In an era dominated by network connectivity, the reliance on robust and secure networks has become paramount. With the advent of 5G and the Internet of Things, networks are expanding in both scale and complexity, rendering them susceptible to a myriad of cyber threats. This escalating risk encompasses potential breaches of user privacy, unauthorized access to transmitted data, and targeted attacks on the underlying network infrastructure. To safeguard the integrity and security of modern networked societies, the deployment of Network Intrusion Detection Systems is imperative. This paper presents a novel lightweight detection model that seamlessly integrates Spiking Neural Networks and Convolutional Neural Networks with advanced algorithmic frameworks. Leveraging this hybrid approach, the proposed model achieves superior detection accuracy while maintaining efficiency in terms of power consumption and computational resources. This paper presents a new style recognition model that seamlessly integrates <b>s</b>piking neural networks and convolutional neural networks with advanced algorithmic frameworks. We call this combined method Spiking-HCCN. Using this hybrid approach, Spiking-HCCN achieves superior detection accuracy while maintaining efficiency in terms of power consumption and computational resources. Comparative evaluations against state-of-the-art models, including Spiking GCN and Spike-DHS, demonstrate significant performance advantages. Spiking-HCCN outperforms these benchmarks by 24% in detection accuracy, 21% in delay, and 29% in energy efficiency, underscoring its efficacy in fortifying network security in the face of evolving cyber threats.</p>\",\"PeriodicalId\":501576,\"journal\":{\"name\":\"Cluster Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10586-024-04603-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04603-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这个以网络连接为主导的时代,对稳健安全的网络的依赖变得至关重要。随着 5G 和物联网的出现,网络的规模和复杂性都在不断扩大,使其容易受到无数网络威胁的影响。这种不断升级的风险包括潜在的用户隐私泄露、对传输数据的未经授权访问以及对底层网络基础设施的定向攻击。为了保障现代网络社会的完整性和安全性,部署网络入侵检测系统势在必行。本文提出了一种新型轻量级检测模型,它将尖峰神经网络和卷积神经网络与先进的算法框架无缝集成。利用这种混合方法,所提出的模型在保持功耗和计算资源效率的同时,实现了更高的检测精度。本文提出了一种新的风格识别模型,它将尖峰神经网络和卷积神经网络与先进的算法框架完美地结合在一起。我们称这种组合方法为 Spiking-HCCN。利用这种混合方法,Spiking-HCCN 在保持功耗和计算资源效率的同时,实现了更高的检测精度。与包括 Spiking GCN 和 Spike-DHS 在内的最先进模型的比较评估表明,Spiking-HCCN 具有显著的性能优势。Spiking-HCCN 在检测准确率、延迟和能效方面分别比这些基准高出 24%、21% 和 29%,这表明它在面对不断变化的网络威胁时能够有效加强网络安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A revolutionary approach to use convolutional spiking neural networks for robust intrusion detection

In an era dominated by network connectivity, the reliance on robust and secure networks has become paramount. With the advent of 5G and the Internet of Things, networks are expanding in both scale and complexity, rendering them susceptible to a myriad of cyber threats. This escalating risk encompasses potential breaches of user privacy, unauthorized access to transmitted data, and targeted attacks on the underlying network infrastructure. To safeguard the integrity and security of modern networked societies, the deployment of Network Intrusion Detection Systems is imperative. This paper presents a novel lightweight detection model that seamlessly integrates Spiking Neural Networks and Convolutional Neural Networks with advanced algorithmic frameworks. Leveraging this hybrid approach, the proposed model achieves superior detection accuracy while maintaining efficiency in terms of power consumption and computational resources. This paper presents a new style recognition model that seamlessly integrates spiking neural networks and convolutional neural networks with advanced algorithmic frameworks. We call this combined method Spiking-HCCN. Using this hybrid approach, Spiking-HCCN achieves superior detection accuracy while maintaining efficiency in terms of power consumption and computational resources. Comparative evaluations against state-of-the-art models, including Spiking GCN and Spike-DHS, demonstrate significant performance advantages. Spiking-HCCN outperforms these benchmarks by 24% in detection accuracy, 21% in delay, and 29% in energy efficiency, underscoring its efficacy in fortifying network security in the face of evolving cyber threats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative and qualitative similarity measure for data clustering analysis OntoXAI: a semantic web rule language approach for explainable artificial intelligence Multi-threshold image segmentation using a boosted whale optimization: case study of breast invasive ductal carcinomas PSO-ACO-based bi-phase lightweight intrusion detection system combined with GA optimized ensemble classifiers A scalable and power efficient MAC protocol with adaptive TDMA for M2M communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1